A. S. Shikoh, A. Popelka, F. Touati, M. Benammar, Zhaozhao Zhu, T. Mankowski, K. Balakrishnan, M. Mansuripur, C. Falco
{"title":"Highly transparent low sheet resistance electrodes for solar cell applications","authors":"A. S. Shikoh, A. Popelka, F. Touati, M. Benammar, Zhaozhao Zhu, T. Mankowski, K. Balakrishnan, M. Mansuripur, C. Falco","doi":"10.1109/ICM.2014.7071840","DOIUrl":null,"url":null,"abstract":"High aspect ratio copper nanowires were synthesized, using a solution-based approach. The nanowires along with reduced graphene oxide thin films were sprayed onto glass and flexible substrates and later annealed in order to produce transparent conducting electrodes (TCEs). These electrodes exhibited 91.5% optical transmissivity and around 9- Ω/sq sheet resistance, which are comparable to Indium Tin Oxide (ITO). In addition, the hybrid TCEs, when exposed to ambient temperature showed slowed sheet resistance degradation. The electrodes deposited on a flexible substrate, showed immunity against any notable changes in the sheet resistance, when gone through numerous bending cycles. Adaption of such nanomaterials in conducting films could lead to the potential alternatives for the conventional ITO, with applications in numerous industries, including solar cells manufacturing.","PeriodicalId":107354,"journal":{"name":"2014 26th International Conference on Microelectronics (ICM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 26th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2014.7071840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
High aspect ratio copper nanowires were synthesized, using a solution-based approach. The nanowires along with reduced graphene oxide thin films were sprayed onto glass and flexible substrates and later annealed in order to produce transparent conducting electrodes (TCEs). These electrodes exhibited 91.5% optical transmissivity and around 9- Ω/sq sheet resistance, which are comparable to Indium Tin Oxide (ITO). In addition, the hybrid TCEs, when exposed to ambient temperature showed slowed sheet resistance degradation. The electrodes deposited on a flexible substrate, showed immunity against any notable changes in the sheet resistance, when gone through numerous bending cycles. Adaption of such nanomaterials in conducting films could lead to the potential alternatives for the conventional ITO, with applications in numerous industries, including solar cells manufacturing.