Face detection and emotional extraction system using double structure neural networks

Y. Mitsukura, M. Fukumi, N. Akamatsu
{"title":"Face detection and emotional extraction system using double structure neural networks","authors":"Y. Mitsukura, M. Fukumi, N. Akamatsu","doi":"10.1109/ICONIP.2002.1198139","DOIUrl":null,"url":null,"abstract":"We propose a new method to examine whether or not human faces are included in color images by using a lip detection neural network (LDNN) and a skin distinction neural network (SDNN). In conventional methods, if there exists the same color as the skin color in scenes, the domain which is accepted as not only the skin color but any other color can be searched. However, first, the lips are detected by LDNN in the proposed method. Next, SDNN is utilized to distinguish skin color from the other colors. The proposed method can obtain relatively high recognition accuracy, since it has the double recognition structure of LDNN and SDNN. Finally, in order to demonstrate the effectiveness of the proposed scheme, computer simulations were performed. First, 100 lip color, 100 skin color and 100 background pictures, which are changed into 10/spl times/10 pixels, are prepared for training. The validity was verified by testing images containing several faces.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new method to examine whether or not human faces are included in color images by using a lip detection neural network (LDNN) and a skin distinction neural network (SDNN). In conventional methods, if there exists the same color as the skin color in scenes, the domain which is accepted as not only the skin color but any other color can be searched. However, first, the lips are detected by LDNN in the proposed method. Next, SDNN is utilized to distinguish skin color from the other colors. The proposed method can obtain relatively high recognition accuracy, since it has the double recognition structure of LDNN and SDNN. Finally, in order to demonstrate the effectiveness of the proposed scheme, computer simulations were performed. First, 100 lip color, 100 skin color and 100 background pictures, which are changed into 10/spl times/10 pixels, are prepared for training. The validity was verified by testing images containing several faces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双结构神经网络的人脸检测与情感提取系统
本文提出了一种基于唇形检测神经网络(LDNN)和皮肤识别神经网络(SDNN)的彩色图像人脸检测方法。在传统的方法中,如果场景中存在与皮肤颜色相同的颜色,则可以搜索不仅被接受为皮肤颜色而且被接受为其他颜色的区域。然而,该方法首先利用LDNN对唇形进行检测。接下来,利用SDNN将肤色与其他颜色区分开来。该方法具有LDNN和SDNN的双重识别结构,可以获得较高的识别精度。最后,为了验证所提方案的有效性,进行了计算机仿真。首先,准备100张唇色、100张肤色、100张背景图,将其变换成10/spl倍/10像素进行训练。通过对包含多个人脸的图像进行测试,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1