Marviola Hardini, Mochamad Heru Riza Chakim, Lena Magdalena, Hiroshi Kenta, Ageng Setiani Rafika, Dwi Julianingsih
{"title":"Image-based Air Quality Prediction using Convolutional Neural Networks and Machine Learning","authors":"Marviola Hardini, Mochamad Heru Riza Chakim, Lena Magdalena, Hiroshi Kenta, Ageng Setiani Rafika, Dwi Julianingsih","doi":"10.34306/att.v5i1sp.337","DOIUrl":null,"url":null,"abstract":"Air quality has become a major public concern due to the significant threat posed by air pollution to human health, and rapid and efficient monitoring of air quality is crucial for pollution control and human health. In this paper, deep learning and image-based models are proposed to estimate air quality. To evaluate the level of air quality, the model collects feature information from landscape photos taken by mobile cameras. To analyze public perception of air quality, researchers collected questionnaire data from 257 people. The Smartpls method allows for structural analysis to determine the influence of each variable on other variables and the extent of their contribution to the final variable of overall perception of air quality. This study aims to develop a novel approach for air quality prediction using image-based data and machine learning techniques. The research used convolutional neural networks to extract features from images and predict the air quality index. The study was conducted using a dataset obtained from a network of air quality sensors across the city. The results of the study showed that the proposed approach can provide accurate air quality predictions compared to the traditional methods. The developed model was able to capture the complex relationships between air quality and environmental factors, such as temperature and humidity. The implications of the study suggest that image-based air quality prediction can be a powerful tool for improving public health and reducing the impact of air pollution. The study's findings hold promise for a healthier future by facilitating more effective pollution management and improved air quality regulation. The study's primary novelty lies in its approach to air quality prediction by deploying convolutional neural networks to extract image features for predicting air quality indices. This application of advanced machine learning techniques to image-based data for air quality estimation marks a significant advancement.","PeriodicalId":143921,"journal":{"name":"Aptisi Transactions on Technopreneurship (ATT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aptisi Transactions on Technopreneurship (ATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34306/att.v5i1sp.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Air quality has become a major public concern due to the significant threat posed by air pollution to human health, and rapid and efficient monitoring of air quality is crucial for pollution control and human health. In this paper, deep learning and image-based models are proposed to estimate air quality. To evaluate the level of air quality, the model collects feature information from landscape photos taken by mobile cameras. To analyze public perception of air quality, researchers collected questionnaire data from 257 people. The Smartpls method allows for structural analysis to determine the influence of each variable on other variables and the extent of their contribution to the final variable of overall perception of air quality. This study aims to develop a novel approach for air quality prediction using image-based data and machine learning techniques. The research used convolutional neural networks to extract features from images and predict the air quality index. The study was conducted using a dataset obtained from a network of air quality sensors across the city. The results of the study showed that the proposed approach can provide accurate air quality predictions compared to the traditional methods. The developed model was able to capture the complex relationships between air quality and environmental factors, such as temperature and humidity. The implications of the study suggest that image-based air quality prediction can be a powerful tool for improving public health and reducing the impact of air pollution. The study's findings hold promise for a healthier future by facilitating more effective pollution management and improved air quality regulation. The study's primary novelty lies in its approach to air quality prediction by deploying convolutional neural networks to extract image features for predicting air quality indices. This application of advanced machine learning techniques to image-based data for air quality estimation marks a significant advancement.