C. Liu, G.Q. Zhang, L. Ernst, M. Vervoort, G. Wisse
{"title":"Buckling driven interface delamination between a thin metal layer and a ceramic substrate","authors":"C. Liu, G.Q. Zhang, L. Ernst, M. Vervoort, G. Wisse","doi":"10.1109/ECTC.2001.927794","DOIUrl":null,"url":null,"abstract":"Interface delamination failure caused by thermomechanical loading and mismatch of thermal expansion coefficients is one of the important failure modes occurring in electronic packages, thus a threat for package reliability. To solve this problem, both academic institutions and industry have been spending tremendous research effort in order to understand the inherent failure mechanisms and to develop advanced and reliable experimental and simulation methodologies, thus to be able to predict and to avoid interface delamination before physical prototyping. Various damage mechanisms can be involved and can result into interface delamination phenomena. These are not all sufficiently addressed and/or reported so far, probably because of the complexities caused by the occurrence of strong geometric- and material nonlinearities. One of the phenomena being insufficiently understood so far is the so-called buckling driven delamination of thin metallic layers on ceramic substrates. This phenomena is discussed in the present paper.","PeriodicalId":340217,"journal":{"name":"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2001.927794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Interface delamination failure caused by thermomechanical loading and mismatch of thermal expansion coefficients is one of the important failure modes occurring in electronic packages, thus a threat for package reliability. To solve this problem, both academic institutions and industry have been spending tremendous research effort in order to understand the inherent failure mechanisms and to develop advanced and reliable experimental and simulation methodologies, thus to be able to predict and to avoid interface delamination before physical prototyping. Various damage mechanisms can be involved and can result into interface delamination phenomena. These are not all sufficiently addressed and/or reported so far, probably because of the complexities caused by the occurrence of strong geometric- and material nonlinearities. One of the phenomena being insufficiently understood so far is the so-called buckling driven delamination of thin metallic layers on ceramic substrates. This phenomena is discussed in the present paper.