Enabling Machine Learning in Software Architecture Frameworks

Armin Moin, A. Badii, Stephan Günnemann, Moharram Challenger
{"title":"Enabling Machine Learning in Software Architecture Frameworks","authors":"Armin Moin, A. Badii, Stephan Günnemann, Moharram Challenger","doi":"10.1109/CAIN58948.2023.00021","DOIUrl":null,"url":null,"abstract":"Several architecture frameworks for software, systems, and enterprises have been proposed in the literature. They have identified various stakeholders and defined architecture viewpoints and views to frame and address stakeholder concerns. However, the Machine Learning (ML) and data science-related concerns of data scientists and data engineers are yet to be included in existing architecture frameworks. We interviewed 65 experts from around 25 organizations in over ten countries to devise and validate the proposed framework that addresses the mentioned shortcoming.","PeriodicalId":175580,"journal":{"name":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIN58948.2023.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several architecture frameworks for software, systems, and enterprises have been proposed in the literature. They have identified various stakeholders and defined architecture viewpoints and views to frame and address stakeholder concerns. However, the Machine Learning (ML) and data science-related concerns of data scientists and data engineers are yet to be included in existing architecture frameworks. We interviewed 65 experts from around 25 organizations in over ten countries to devise and validate the proposed framework that addresses the mentioned shortcoming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在软件架构框架中实现机器学习
在文献中已经提出了几个软件、系统和企业的体系结构框架。他们已经确定了各种涉众,并定义了体系结构观点和视图,以构建和处理涉众关注的问题。然而,数据科学家和数据工程师对机器学习(ML)和数据科学相关的担忧尚未包含在现有的架构框架中。我们采访了来自10多个国家约25个组织的65名专家,以设计和验证解决上述缺点的拟议框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
safe.trAIn – Engineering and Assurance of a Driverless Regional Train Extensible Modeling Framework for Reliable Machine Learning System Analysis Maintaining and Monitoring AIOps Models Against Concept Drift Conceptualising Software Development Lifecycle for Engineering AI Planning Systems Reproducibility Requires Consolidated Artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1