Rate and Complexity-Aware Coding Scheme for Fixed-Camera Videos Based on Region-of-Interest Detection

Cristiano Santos, R. Conceição, L. Agostini, G. Corrêa, B. Zatt, M. Porto
{"title":"Rate and Complexity-Aware Coding Scheme for Fixed-Camera Videos Based on Region-of-Interest Detection","authors":"Cristiano Santos, R. Conceição, L. Agostini, G. Corrêa, B. Zatt, M. Porto","doi":"10.1145/3126858.3131599","DOIUrl":null,"url":null,"abstract":"This paper presents a rate and complexity-aware coding scheme for fixed-camera videos that are designed to improve image quality in Regions of Interest (ROI) by prioritizing the encoding of such regions through the use of a modified mode decision equation. ROIs are defined in this work as faces, with the application of a face detection algorithm. Background Images (BGI) are also detected with the aim of reducing bitrate in coding blocks belonging to these areas. Finally, the proposed scheme also applies an early decision method intending to reduce coding time. Experimental results show that the proposed scheme is capable of improving the image quality in 0.99 dB in ROIs, reaching an improvement of 1.16 dB in the best case. Also, the scheme achieves an encoding time reduction of up to 55% (about 5.5%, on average) with unexpressive variations in the required bitrate.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3131599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a rate and complexity-aware coding scheme for fixed-camera videos that are designed to improve image quality in Regions of Interest (ROI) by prioritizing the encoding of such regions through the use of a modified mode decision equation. ROIs are defined in this work as faces, with the application of a face detection algorithm. Background Images (BGI) are also detected with the aim of reducing bitrate in coding blocks belonging to these areas. Finally, the proposed scheme also applies an early decision method intending to reduce coding time. Experimental results show that the proposed scheme is capable of improving the image quality in 0.99 dB in ROIs, reaching an improvement of 1.16 dB in the best case. Also, the scheme achieves an encoding time reduction of up to 55% (about 5.5%, on average) with unexpressive variations in the required bitrate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于兴趣区域检测的固定摄像机视频速率和复杂度感知编码方案
本文提出了一种速率和复杂性感知的固定摄像机视频编码方案,该方案旨在通过使用改进的模式决策方程对感兴趣区域(ROI)的编码进行优先排序,从而提高感兴趣区域(ROI)的图像质量。在这项工作中,roi被定义为人脸,并应用了人脸检测算法。背景图像(BGI)也被检测,目的是降低属于这些区域的编码块的比特率。最后,该方案还采用了一种早期决策方法,旨在减少编码时间。实验结果表明,该方案能够将roi的图像质量提高0.99 dB,在最佳情况下可提高1.16 dB。此外,该方案实现了编码时间减少高达55%(约5.5%,平均),在所需的比特率无明显变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STorM: A Hypermedia Authoring Model for Interactive Digital Out-of-Home Media Distributed Data Clustering in the Context of the Internet of Things: A Data Traffic Reduction Approach AnyLanguage-To-LIBRAS: Evaluation of an Machine Translation Service of Any Oralized Language for the Brazilian Sign Language Adaptive Sensing Relevance Exploiting Social Media Mining in Smart Cities Automatic Text Recognition in Web Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1