Intelligent Gait Parameter Analysis System Based on Deep Learning and Human Skeleton Detection in Videos

Yi-Hung Chiu, Cheng-Yeh Tsai, Chen-Sen Ouyang, Chi-Hsien Huang, Yu-Chang Chen, San-Yuan Wang, Huei-Ping Dong
{"title":"Intelligent Gait Parameter Analysis System Based on Deep Learning and Human Skeleton Detection in Videos","authors":"Yi-Hung Chiu, Cheng-Yeh Tsai, Chen-Sen Ouyang, Chi-Hsien Huang, Yu-Chang Chen, San-Yuan Wang, Huei-Ping Dong","doi":"10.1109/IS3C57901.2023.00030","DOIUrl":null,"url":null,"abstract":"An intelligent gait parameter analysis system is proposed based on deep learning and human skeleton detection in videos. Video of the subject’s whole body while walking along a straight path is recorded, then gait landmark sequences are detected and corrected. After that, the corresponding frame intervals of heel landing are detected and used for calculating four gait parameters, gait speed, stride length, stride duration, and cadence. Experimental results have shown that by comparing each detected gait parameter with its corresponding ground truth, the mean squared error, mean absolute error, and mean absolute percentage error are all small. Moreover, five of six detected gait parameters possess high Pearson correlation coefficients with the corresponding ground truth. Therefore, our proposed system possesses the potential to be a precise and efficient gait analysis approach.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C57901.2023.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An intelligent gait parameter analysis system is proposed based on deep learning and human skeleton detection in videos. Video of the subject’s whole body while walking along a straight path is recorded, then gait landmark sequences are detected and corrected. After that, the corresponding frame intervals of heel landing are detected and used for calculating four gait parameters, gait speed, stride length, stride duration, and cadence. Experimental results have shown that by comparing each detected gait parameter with its corresponding ground truth, the mean squared error, mean absolute error, and mean absolute percentage error are all small. Moreover, five of six detected gait parameters possess high Pearson correlation coefficients with the corresponding ground truth. Therefore, our proposed system possesses the potential to be a precise and efficient gait analysis approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习和视频中人体骨骼检测的智能步态参数分析系统
提出了一种基于深度学习和视频中人体骨骼检测的智能步态参数分析系统。记录受试者沿直线行走时的全身视频,然后检测步态标记序列并进行校正。然后检测足跟落地对应的帧间隔,计算步态速度、步幅、步幅持续时间和步幅四个步态参数。实验结果表明,将每个检测到的步态参数与其相应的地面真值进行比较,均方误差、平均绝对误差和平均绝对百分比误差都很小。此外,检测到的6个步态参数中有5个与相应的地面真值具有较高的Pearson相关系数。因此,我们提出的系统具有成为一种精确有效的步态分析方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of Coordinated Frequency Control Technologies for Wind Turbines, HVDC and Energy Storage Systems Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images A Broadband Millimeter-Wave 5G Low Noise Amplifier Design in 22 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) CMOS Wearable PVDF-TrFE-based Pressure Sensors for Throat Vibrations and Arterial Pulses Monitoring Fast Detection of Fabric Defects based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1