18.1 A -105dBc THD+N (-114dBc HD2) at 2.8VPP Swing and 120dB DR Audio Decoder with Sample-and-Hold Noise Filtering and Poly Resistor Linearization Schemes

Shon-Hang Wen, Kuan-Dar Chen, C. Hsiao, Ya-Chi Chen
{"title":"18.1 A -105dBc THD+N (-114dBc HD2) at 2.8VPP Swing and 120dB DR Audio Decoder with Sample-and-Hold Noise Filtering and Poly Resistor Linearization Schemes","authors":"Shon-Hang Wen, Kuan-Dar Chen, C. Hsiao, Ya-Chi Chen","doi":"10.1109/ISSCC.2019.8662456","DOIUrl":null,"url":null,"abstract":"Three major design issues that arise for high-fidelity audio decoders are: 1) DAC reference noise limiting achievable SNR [1], [2]; 2) THD+N degradation at large output swing [3], [4]; and 3) Distortion arising from limited amplifier loop gain as a consequence of high output load capacitance (CL) [5]. In the first issue, reference noise along with individual DAC cell noise generally limits SNR for a full-scale signal. The use of large device sizes [1], source degeneration [2] and chopping can mitigate 1/f noise, but none are effective for reducing thermal noise. Consequently, either more power or an external bypass capacitor for noise filtering is necessary for reducing DAC reference noise. In the second issue, THD+N of high-output-swing amplifiers degrades proportionally as the output swing increases above 1.6VPP, even with a 4.5V supply [3], [4]. The primary cause of this severe 2nd-order harmonic distortion (HD2) is due to the depletion effect of poly resistors [6]. Lastly, for adequate stability margin, the UGB and loop gain of the conventional nested Miller compensation (NMC) amplifier is restricted by an output limiting pole $(\\omega _{\\mathrm{limit}})$ and CL. In [5], a frequency compensation scheme is proposed to push the UGB close to $\\omega _{\\mathrm{limit}}$ and enhance the loop gain over the audio band (20Hz to 20kHz) while handling a CL up to 10nF. However, with a CL of 22nF, the amplifier begins to ring for a transient step. In this work, three solutions are presented to solve the aforementioned issues: 1) an area- and power-efficient sample-and-hold (S&H) noise filtering technique is introduced to shape the 1/f and thermal noise of the reference to frequencies below the audio band, thus greatly improving SNR for a full-scale signal; 2) a poly resistor linearization scheme is presented to improve HD2 by mitigating the depletion effect of resistors; and 3) a frequency compensation method for multistage amplifiers is introduced that boosts loop gain and thus enhances amplifier linearity without being limited by large CL. Combining these techniques, the decoder and amplifier achieve -105dBc THD+N (-114dBc HD2) and 120dB DR, and can support a CL up to 22nF.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Three major design issues that arise for high-fidelity audio decoders are: 1) DAC reference noise limiting achievable SNR [1], [2]; 2) THD+N degradation at large output swing [3], [4]; and 3) Distortion arising from limited amplifier loop gain as a consequence of high output load capacitance (CL) [5]. In the first issue, reference noise along with individual DAC cell noise generally limits SNR for a full-scale signal. The use of large device sizes [1], source degeneration [2] and chopping can mitigate 1/f noise, but none are effective for reducing thermal noise. Consequently, either more power or an external bypass capacitor for noise filtering is necessary for reducing DAC reference noise. In the second issue, THD+N of high-output-swing amplifiers degrades proportionally as the output swing increases above 1.6VPP, even with a 4.5V supply [3], [4]. The primary cause of this severe 2nd-order harmonic distortion (HD2) is due to the depletion effect of poly resistors [6]. Lastly, for adequate stability margin, the UGB and loop gain of the conventional nested Miller compensation (NMC) amplifier is restricted by an output limiting pole $(\omega _{\mathrm{limit}})$ and CL. In [5], a frequency compensation scheme is proposed to push the UGB close to $\omega _{\mathrm{limit}}$ and enhance the loop gain over the audio band (20Hz to 20kHz) while handling a CL up to 10nF. However, with a CL of 22nF, the amplifier begins to ring for a transient step. In this work, three solutions are presented to solve the aforementioned issues: 1) an area- and power-efficient sample-and-hold (S&H) noise filtering technique is introduced to shape the 1/f and thermal noise of the reference to frequencies below the audio band, thus greatly improving SNR for a full-scale signal; 2) a poly resistor linearization scheme is presented to improve HD2 by mitigating the depletion effect of resistors; and 3) a frequency compensation method for multistage amplifiers is introduced that boosts loop gain and thus enhances amplifier linearity without being limited by large CL. Combining these techniques, the decoder and amplifier achieve -105dBc THD+N (-114dBc HD2) and 120dB DR, and can support a CL up to 22nF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
18.1 A -105dBc THD+N (-114dBc HD2), 2.8VPP摆幅,120dB DR音频解码器,采样保持噪声滤波和多电阻线性化方案
高保真音频解码器的三个主要设计问题是:1)DAC参考噪声限制了可实现的信噪比[1],[2];2)大输出摆幅下THD+N衰减[3],[4];3)高输出负载电容(CL)导致放大器环路增益受限而产生的失真[5]。在第一个问题中,参考噪声以及单个DAC单元噪声通常会限制满量程信号的信噪比。使用大尺寸器件[1]、源退化[2]和斩波可以减轻1/f噪声,但都不能有效降低热噪声。因此,为了降低DAC参考噪声,需要更多的功率或用于噪声滤波的外部旁路电容器。在第二个问题中,即使使用4.5V电源,高输出摆幅放大器的THD+N也会随着输出摆幅高于1.6VPP而成比例地降低[3],[4]。这种严重的二阶谐波失真(HD2)的主要原因是由于聚电阻的损耗效应[6]。最后,为了获得足够的稳定余量,传统嵌套米勒补偿(NMC)放大器的UGB和环路增益受到输出限制极$(\omega _{\ maththrm {limit}})$和CL的限制。在[5]中,提出了一种频率补偿方案,使UGB接近$\omega _{\ maththrm {limit}}$,并在处理高达10nF的CL时提高音频频带(20Hz至20kHz)上的环路增益。然而,当CL为22nF时,放大器开始为瞬态步进响起。在这项工作中,提出了三种解决上述问题的方案:1)采用面积和功耗效率高的采样保持(S&H)噪声滤波技术,将参考频率的1/f和热噪声塑造为音频频带以下的频率,从而大大提高了满量程信号的信噪比;2)提出了一种多电阻线性化方案,通过减轻电阻损耗效应来提高HD2;3)介绍了一种多级放大器的频率补偿方法,该方法可以提高环路增益,从而提高放大器的线性度,而不受大CL的限制。结合这些技术,解码器和放大器可以实现-105dBc的THD+N (-114dBc的HD2)和120dB的DR,并且可以支持高达22nF的CL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain 22.7 A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control 2.5 A 40×40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control 11.2 A CMOS Biosensor Array with 1024 3-Electrode Voltammetry Pixels and 93dB Dynamic Range 11.3 A Capacitive Biosensor for Cancer Diagnosis Using a Functionalized Microneedle and a 13.7b-Resolution Capacitance-to-Digital Converter from 1 to 100nF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1