{"title":"Tutorial on Multimodal Machine Learning","authors":"Louis-Philippe Morency, P. Liang, Amir Zadeh","doi":"10.18653/v1/2022.naacl-tutorials.5","DOIUrl":null,"url":null,"abstract":"Multimodal machine learning involves integrating and modeling information from multiple heterogeneous sources of data. It is a challenging yet crucial area with numerous real-world applications in multimedia, affective computing, robotics, finance, HCI, and healthcare. This tutorial, building upon a new edition of a survey paper on multimodal ML as well as previously-given tutorials and academic courses, will describe an updated taxonomy on multimodal machine learning synthesizing its core technical challenges and major directions for future research.","PeriodicalId":408563,"journal":{"name":"Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.naacl-tutorials.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Multimodal machine learning involves integrating and modeling information from multiple heterogeneous sources of data. It is a challenging yet crucial area with numerous real-world applications in multimedia, affective computing, robotics, finance, HCI, and healthcare. This tutorial, building upon a new edition of a survey paper on multimodal ML as well as previously-given tutorials and academic courses, will describe an updated taxonomy on multimodal machine learning synthesizing its core technical challenges and major directions for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态机器学习教程
多模态机器学习涉及对来自多个异构数据源的信息进行集成和建模。这是一个具有挑战性但又至关重要的领域,在多媒体、情感计算、机器人、金融、HCI和医疗保健等领域有许多实际应用。本教程基于一篇关于多模态机器学习的调查论文的新版本,以及之前给出的教程和学术课程,将描述一个关于多模态机器学习的最新分类,综合其核心技术挑战和未来研究的主要方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Centered Evaluation of Explanations Self-supervised Representation Learning for Speech Processing Tutorial on Multimodal Machine Learning New Frontiers of Information Extraction Contrastive Data and Learning for Natural Language Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1