{"title":"New Frontiers of Information Extraction","authors":"Muhao Chen, Lifu Huang, Manling Li, Ben Zhou, Heng Ji, D. Roth","doi":"10.18653/v1/2022.naacl-tutorials.3","DOIUrl":null,"url":null,"abstract":"This tutorial targets researchers and practitioners who are interested in AI and ML technologies for structural information extraction (IE) from unstructured textual sources. Particularly, this tutorial will provide audience with a systematic introduction to recent advances of IE, by answering several important research questions. These questions include (i) how to develop an robust IE system from noisy, insufficient training data, while ensuring the reliability of its prediction? (ii) how to foster the generalizability of IE through enhancing the system’s cross-lingual, cross-domain, cross-task and cross-modal transferability? (iii) how to precisely support extracting structural information with extremely fine-grained, diverse and boundless labels? (iv) how to further improve IE by leveraging indirect supervision from other NLP tasks, such as NLI, QA or summarization, and pre-trained language models? (v) how to acquire knowledge to guide the inference of IE systems? We will discuss several lines of frontier research that tackle those challenges, and will conclude the tutorial by outlining directions for further investigation.","PeriodicalId":408563,"journal":{"name":"Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.naacl-tutorials.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This tutorial targets researchers and practitioners who are interested in AI and ML technologies for structural information extraction (IE) from unstructured textual sources. Particularly, this tutorial will provide audience with a systematic introduction to recent advances of IE, by answering several important research questions. These questions include (i) how to develop an robust IE system from noisy, insufficient training data, while ensuring the reliability of its prediction? (ii) how to foster the generalizability of IE through enhancing the system’s cross-lingual, cross-domain, cross-task and cross-modal transferability? (iii) how to precisely support extracting structural information with extremely fine-grained, diverse and boundless labels? (iv) how to further improve IE by leveraging indirect supervision from other NLP tasks, such as NLI, QA or summarization, and pre-trained language models? (v) how to acquire knowledge to guide the inference of IE systems? We will discuss several lines of frontier research that tackle those challenges, and will conclude the tutorial by outlining directions for further investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息提取的新领域
本教程面向对从非结构化文本源中提取结构信息(IE)的AI和ML技术感兴趣的研究人员和实践者。特别是,本教程将通过回答几个重要的研究问题,系统地介绍IE的最新进展。这些问题包括(i)如何从嘈杂的、不充分的训练数据中开发一个健壮的IE系统,同时确保其预测的可靠性?(ii)如何通过提高系统的跨语言、跨领域、跨任务和跨模式的可转移性,促进IE的推广?(三)如何精确支持极细粒度、多样性和无限标签的结构信息提取?(iv)如何通过利用其他NLP任务(如NLI、QA或摘要)和预训练语言模型的间接监督来进一步改进IE ?(v)如何获取知识来指导IE系统的推理?我们将讨论解决这些挑战的几条前沿研究路线,并将通过概述进一步研究的方向来结束本教程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Centered Evaluation of Explanations Self-supervised Representation Learning for Speech Processing Tutorial on Multimodal Machine Learning New Frontiers of Information Extraction Contrastive Data and Learning for Natural Language Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1