Design and fabrication of net flux radiometers for Mars exploration

C. Proulx, L. Ngo Phong, F. Châteauneuf
{"title":"Design and fabrication of net flux radiometers for Mars exploration","authors":"C. Proulx, L. Ngo Phong, F. Châteauneuf","doi":"10.1117/12.2040030","DOIUrl":null,"url":null,"abstract":"We report on the development of a net flux radiometer as part of a wireless sensor network for the acquisition of surface meteorological data on Mars. The radiometer makes use of four separate sensors to measure simultaneously: (i) global solar radiation; (ii) ground reflected solar radiation; (iii) sky emitted infrared radiation; and (iv) ground emitted infrared radiation. To perform measurements in the broad spectral range from 0.2 to 50 μm, goldblack coated microbolometers of 100 um size were fabricated for use in custom packaged pyranometers and pyrgeometers. Each microbolometer was placed at the center of an optically coated dome which provided a field-of-view of 180° and acted as a bandpass filter. Under nominal operating conditions the microbolometer showed a responsivity of ~ 75 kV/W and a time constant of ~ 13 ms. Parametric characterization of the radiometer provided a set of bias voltages, integration time, and temperature set points that help prevent the issue of output saturation in field operation conditions. The measured sensitivity, in the range from 2 to 6 mV/(W/m2), and measured resolution, from 0.06 to 0.15 W/m2, compared favorably with those of commercial net flux instruments. The results obtained in the field operation confirmed that the temporal responses of the pyranometer and pyrgeometer are in good agreement with the responses of the commercial instrument. However, a signal drift was observed, mostly in the pyrgeometer data, over a long period acquisition. This drift, which appears to be in correlation with changes in the environment temperature, is believed to be a result of the dome heating effect.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2040030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We report on the development of a net flux radiometer as part of a wireless sensor network for the acquisition of surface meteorological data on Mars. The radiometer makes use of four separate sensors to measure simultaneously: (i) global solar radiation; (ii) ground reflected solar radiation; (iii) sky emitted infrared radiation; and (iv) ground emitted infrared radiation. To perform measurements in the broad spectral range from 0.2 to 50 μm, goldblack coated microbolometers of 100 um size were fabricated for use in custom packaged pyranometers and pyrgeometers. Each microbolometer was placed at the center of an optically coated dome which provided a field-of-view of 180° and acted as a bandpass filter. Under nominal operating conditions the microbolometer showed a responsivity of ~ 75 kV/W and a time constant of ~ 13 ms. Parametric characterization of the radiometer provided a set of bias voltages, integration time, and temperature set points that help prevent the issue of output saturation in field operation conditions. The measured sensitivity, in the range from 2 to 6 mV/(W/m2), and measured resolution, from 0.06 to 0.15 W/m2, compared favorably with those of commercial net flux instruments. The results obtained in the field operation confirmed that the temporal responses of the pyranometer and pyrgeometer are in good agreement with the responses of the commercial instrument. However, a signal drift was observed, mostly in the pyrgeometer data, over a long period acquisition. This drift, which appears to be in correlation with changes in the environment temperature, is believed to be a result of the dome heating effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
火星探测用净通量辐射计的设计与制造
我们报告了作为获取火星表面气象数据的无线传感器网络的一部分的净通量辐射计的发展。辐射计利用四个独立的传感器同时测量:(i)全球太阳辐射;(ii)地面反射的太阳辐射;(iii)天空发射的红外辐射;(四)地面发射的红外辐射。为了在0.2至50 μm的宽光谱范围内进行测量,制作了100 μm尺寸的金黑色涂层微辐射热计,用于定制包装的热辐射计和热测量仪。每个微辐射热计被放置在一个光学涂层圆顶的中心,提供180°的视野,并作为一个带通滤波器。在标称工作条件下,微辐射热计的响应率为~ 75 kV/W,时间常数为~ 13 ms。辐射计的参数特性提供了一组偏置电压、积分时间和温度设定点,有助于防止现场操作条件下的输出饱和问题。测量灵敏度范围为2 ~ 6 mV/(W/m2),测量分辨率范围为0.06 ~ 0.15 W/m2,与商用净通量仪器相比具有优势。野外运行结果证实,热释光仪和热释光仪的时间响应与商用仪器的响应基本一致。然而,在长时间的采集过程中,观测到信号漂移,主要是在pyrgeometer数据中。这种漂移似乎与环境温度的变化有关,据信是圆顶加热效应的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optomechanical cantilever device for displacement sensing and variable attenuator Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments Integration of real-time 3D image acquisition and multiview 3D display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1