Pedestrian detection using shape context and PHOG

Shymaa Saad, M. S. Yasein, M. Mousa, H. Nassar
{"title":"Pedestrian detection using shape context and PHOG","authors":"Shymaa Saad, M. S. Yasein, M. Mousa, H. Nassar","doi":"10.1109/ICCES.2014.7030972","DOIUrl":null,"url":null,"abstract":"This paper describes a new method for pedestrian detection. The focus of the proposed method is to enhance the number of detected pedestrian and to achieve high accuracy with low rates of false negative detection. The method has two stages: the first stage detects pedestrians using part based detector (poselet) while the second stage further detects people by combine top-down recognition with bottom-up image segmentation. For feature extraction, Pyramid Histogram of Orientation Gradient (PHOG) and Shape Context (SC) are used. The proposed method was tested on a popular pedestrian detection benchmark dataset “INRIA person data set” and experimental results show that the detection method achieves high accuracy with low rates of false negative detection.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2014.7030972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a new method for pedestrian detection. The focus of the proposed method is to enhance the number of detected pedestrian and to achieve high accuracy with low rates of false negative detection. The method has two stages: the first stage detects pedestrians using part based detector (poselet) while the second stage further detects people by combine top-down recognition with bottom-up image segmentation. For feature extraction, Pyramid Histogram of Orientation Gradient (PHOG) and Shape Context (SC) are used. The proposed method was tested on a popular pedestrian detection benchmark dataset “INRIA person data set” and experimental results show that the detection method achieves high accuracy with low rates of false negative detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于形状上下文和PHOG的行人检测
本文介绍了一种新的行人检测方法。该方法的重点是增加检测到的行人数量,在低假阴性检测率的情况下达到较高的准确率。该方法分为两个阶段:第一阶段使用基于部分的检测器(poselet)检测行人,第二阶段将自上而下的识别与自下而上的图像分割相结合,进一步检测人。在特征提取方面,使用了方向梯度金字塔直方图(PHOG)和形状上下文(SC)。在流行的行人检测基准数据集“INRIA人数据集”上对该方法进行了测试,实验结果表明,该方法具有较高的检测准确率和较低的误报率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations and performance evaluation of Real-Time Multi-core Systems An Enhanced Queries Scheduler for query processing over a cloud environment EMD thresholding and denoising inspired by wavelet technique A proposed SNOMED CT ontology-based encoding methodology for diabetes diagnosis case-base A proposed framework for robust face identification system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1