Development of Mold Filling Process Simulation considering Air Entrainment using SPH Method

N. Yamagata, M. Ichimiya
{"title":"Development of Mold Filling Process Simulation considering Air Entrainment using SPH Method","authors":"N. Yamagata, M. Ichimiya","doi":"10.23967/wccm-apcom.2022.044","DOIUrl":null,"url":null,"abstract":". Die-casting is a casting method suitable for mass production because it can accurately form complicated shapes. However, when the mold is filled with the molten metal, casting cavities (gas porosity) are generated due to air entrainment, and the strength of the product varies. In this study, the mold filling process considering air entrainment in the die cast are simulated using the two-phase flow SPH method. And then, the behavior of air entrainment due to the filling of molten metal (Aluminum alloy), especially the efect of injection speeds are investigated. In concluson, it is possible to investigate the air entrainment behavior at the time of filling the molten metal and the flow behavior due to different filling speeds. In addition, to speed up the two-phase flow program by SPH method, a parallel algorithm using OpenMP is implemented.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Die-casting is a casting method suitable for mass production because it can accurately form complicated shapes. However, when the mold is filled with the molten metal, casting cavities (gas porosity) are generated due to air entrainment, and the strength of the product varies. In this study, the mold filling process considering air entrainment in the die cast are simulated using the two-phase flow SPH method. And then, the behavior of air entrainment due to the filling of molten metal (Aluminum alloy), especially the efect of injection speeds are investigated. In concluson, it is possible to investigate the air entrainment behavior at the time of filling the molten metal and the flow behavior due to different filling speeds. In addition, to speed up the two-phase flow program by SPH method, a parallel algorithm using OpenMP is implemented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SPH方法的考虑空气夹带的充型过程仿真研究进展
. 压铸是一种适合大批量生产的铸造方法,因为它可以精确地形成复杂的形状。然而,当模具充满熔融金属时,由于夹带空气而产生铸造空腔(气体孔隙),并且产品的强度发生变化。本文采用两相流SPH法对考虑带气的压铸件充型过程进行了数值模拟。在此基础上,研究了金属液(铝合金)的填充对空气的夹带行为,特别是喷射速度的影响。综上所述,可以研究在填充熔融金属时的空气夹带行为和不同填充速度下的流动行为。此外,为了提高SPH法两相流程序的速度,实现了一种基于OpenMP的并行算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forensic Evaluation of Historic Shell Structure: Development of In-Situ Geometry New calculation scheme for compressible Euler equation Numerical study on the hydrate-rich sediment behaviour during depressurization Wind Pressure Characteristics of High-rise buildings in Middle and High-height Urban Areas Spread over Local Terrain Out of Plane Lower Bound Limit Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1