SpectroMeter: Amortized Sublinear Spectral Approximation of Distance on Graphs

R. Litman, A. Bronstein
{"title":"SpectroMeter: Amortized Sublinear Spectral Approximation of Distance on Graphs","authors":"R. Litman, A. Bronstein","doi":"10.1109/3DV.2016.60","DOIUrl":null,"url":null,"abstract":"We present a method to approximate pairwise distance on a graph, having an amortized sub-linear complexity in its size. The proposed method follows the so called heat method due to Crane et al. The only additional input are the values of the eigenfunctions of the graph Laplacian at a subset of the vertices. Using these values we estimate a random walk from the source points, and normalize the result into a unit gradient function. The eigenfunctions are then used to synthesize distance values abiding by these constraints at desired locations. We show that this method works in practice on different types of inputs ranging from triangular meshes to general graphs. We also demonstrate that the resulting approximate distance is accurate enough to be used as the input to a recent method for intrinsic shape correspondence computation.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a method to approximate pairwise distance on a graph, having an amortized sub-linear complexity in its size. The proposed method follows the so called heat method due to Crane et al. The only additional input are the values of the eigenfunctions of the graph Laplacian at a subset of the vertices. Using these values we estimate a random walk from the source points, and normalize the result into a unit gradient function. The eigenfunctions are then used to synthesize distance values abiding by these constraints at desired locations. We show that this method works in practice on different types of inputs ranging from triangular meshes to general graphs. We also demonstrate that the resulting approximate distance is accurate enough to be used as the input to a recent method for intrinsic shape correspondence computation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谱仪:图上距离的平摊亚线性谱近似
我们提出了一种在图上近似两两距离的方法,其大小具有平摊的次线性复杂度。该方法遵循Crane等人提出的热法。唯一额外的输入是图拉普拉斯在一个顶点子集上的特征函数的值。使用这些值,我们从源点估计随机游走,并将结果归一化为单位梯度函数。然后使用特征函数在期望位置合成符合这些约束的距离值。我们证明了这种方法在实践中适用于从三角形网格到一般图的不同类型的输入。我们还证明了所得到的近似距离足够精确,可以用作最近的固有形状对应计算方法的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monocular, Real-Time Surface Reconstruction Using Dynamic Level of Detail Room Layout Estimation with Object and Material Attributes Information Using a Spherical Camera Real-Time Surface of Revolution Reconstruction on Dense SLAM 3D Data Acquisition and Registration Using Two Opposing Kinects Cotemporal Multi-View Video Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1