Experimental determination of dominant scattering mechanisms in scaled InAsSb quantum well

A. Agrawal, A. Ali, R. Misra, P. Schiffer, B. R. Bennett, J. B. Boos, S. Datta
{"title":"Experimental determination of dominant scattering mechanisms in scaled InAsSb quantum well","authors":"A. Agrawal, A. Ali, R. Misra, P. Schiffer, B. R. Bennett, J. B. Boos, S. Datta","doi":"10.1109/DRC.2011.5994405","DOIUrl":null,"url":null,"abstract":"Antimonide based compound semiconductors have gained considerable interest in recent years due to their superior electron and hole transport properties [1]. A Mixed anion InAs<inf>y</inf>Sb<inf>1−y</inf> quantum well heterostructure with high electron mobility of 13,300 cm<sup>2</sup>/Vs has already been demonstrated at a sheet carrier density of 2×10<sup>12</sup> /cm<sup>2</sup>, albeit for a thick EOT quantum well (QW) structure [2]. A thin EOT structure is desired for improving short channel effects while maintaining the high electron mobility in the QW. In this paper, we study the low field electron transport properties in the high mobility InAs<inf>0.8</inf>Sb<inf>0.2</inf> quantum well as we scale the QW heterostructure. Fig. 1(a),(b) show the schematic of the thick (T<inf>QW</inf>=12nm) and scaled (T<inf>QW</inf>=7.5nm) quantum well FET structure using InAs<inf>0.8</inf>Sb<inf>0.2</inf> as channel material, In<inf>0.2</inf>Al<inf>0.8</inf>Sb barrier layer and an ultra-thin GaSb surface layer for avoiding surface oxidation of Al in the barrier [2]. Fig. 2(a),(b) show the simulated energy band diagram of the two structures using self-consistent Schrodinger-Poisson simulation, indicating strong electron confinement in the QW. The effect of nonparabolicity on thick QW with T<inf>QW</inf>=12nm has already been studied and an effective mass (m*) of 0.043m<inf>0</inf> has been extracted experimentally [3]. For scaled QW the subband spacing was adjusted in order to achieve electron sheet charge density as a function of temperature, and the extracted density of states m*=0.05m<inf>0</inf> was correlated to the transport effective mass. Experimental work to verify the obtained effective mass for scaled QW is underway.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Antimonide based compound semiconductors have gained considerable interest in recent years due to their superior electron and hole transport properties [1]. A Mixed anion InAsySb1−y quantum well heterostructure with high electron mobility of 13,300 cm2/Vs has already been demonstrated at a sheet carrier density of 2×1012 /cm2, albeit for a thick EOT quantum well (QW) structure [2]. A thin EOT structure is desired for improving short channel effects while maintaining the high electron mobility in the QW. In this paper, we study the low field electron transport properties in the high mobility InAs0.8Sb0.2 quantum well as we scale the QW heterostructure. Fig. 1(a),(b) show the schematic of the thick (TQW=12nm) and scaled (TQW=7.5nm) quantum well FET structure using InAs0.8Sb0.2 as channel material, In0.2Al0.8Sb barrier layer and an ultra-thin GaSb surface layer for avoiding surface oxidation of Al in the barrier [2]. Fig. 2(a),(b) show the simulated energy band diagram of the two structures using self-consistent Schrodinger-Poisson simulation, indicating strong electron confinement in the QW. The effect of nonparabolicity on thick QW with TQW=12nm has already been studied and an effective mass (m*) of 0.043m0 has been extracted experimentally [3]. For scaled QW the subband spacing was adjusted in order to achieve electron sheet charge density as a function of temperature, and the extracted density of states m*=0.05m0 was correlated to the transport effective mass. Experimental work to verify the obtained effective mass for scaled QW is underway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尺度InAsSb量子阱中主要散射机制的实验测定
近年来,基于锑化物的化合物半导体由于其优越的电子和空穴输运性质而引起了相当大的兴趣[1]。混合阴离子InAsySb1−y量子阱异质结构具有13,300 cm2/Vs的高电子迁移率,已经在2×1012 /cm2的载流子密度下被证明,尽管是厚EOT量子阱(QW)结构[2]。在保持高电子迁移率的同时,需要一种薄的EOT结构来改善短通道效应。本文研究了高迁移率InAs0.8Sb0.2量子的低场电子输运性质,并对量子阱异质结构进行了研究。图1(a)、(b)为采用InAs0.8Sb0.2作为通道材料、In0.2Al0.8Sb势垒层和超薄GaSb表面层以避免势垒中Al的表面氧化的厚度(TQW=12nm)和缩放(TQW=7.5nm)量子阱场效应管结构示意图[2]。图2(a)、(b)为采用自一致薛定谔-泊松模拟得到的两种结构的模拟能带图,表明量子阱中存在较强的电子约束。非抛物性对TQW=12nm的厚QW的影响已经被研究过,实验提取了0.043m0的有效质量(m*)[3]。对于缩放后的量子阱,调整子带间距以实现电子片电荷密度随温度的变化,提取的态密度m*=0.05m0与输运有效质量相关。验证所获得的有效质量的实验工作正在进行中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee Rump sessions Circuit applications based on solution-processed zinc-tin oxide TFTs 1.0 THz fmax InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance Effect of disorder on superfluidity in double layer graphene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1