Exact one-pass synthesis of digital microfluidic biochips

Oliver Keszöcze, R. Wille, Tsung-Yi Ho, R. Drechsler
{"title":"Exact one-pass synthesis of digital microfluidic biochips","authors":"Oliver Keszöcze, R. Wille, Tsung-Yi Ho, R. Drechsler","doi":"10.1145/2593069.2593135","DOIUrl":null,"url":null,"abstract":"With the advances of the microfluidic technology, the design of digital microfluidic biochips recently received significant attention. But thus far, the corresponding design tasks such as binding, scheduling, placement, and routing have usually been considered separately. Furthermore, often just heuristic results have been obtained. In this work, we present a one-pass synthesis scheme which directly realizes the desired functionality onto the chip and, at the same time, guarantees minimality with respect to area and/or timing. For this purpose, the deductive power of solvers for Boolean satisfiability is exploited. Experiments show how the approach leverages the design of the respective devices.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

With the advances of the microfluidic technology, the design of digital microfluidic biochips recently received significant attention. But thus far, the corresponding design tasks such as binding, scheduling, placement, and routing have usually been considered separately. Furthermore, often just heuristic results have been obtained. In this work, we present a one-pass synthesis scheme which directly realizes the desired functionality onto the chip and, at the same time, guarantees minimality with respect to area and/or timing. For this purpose, the deductive power of solvers for Boolean satisfiability is exploited. Experiments show how the approach leverages the design of the respective devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字微流控生物芯片的精确一次合成
随着微流控技术的发展,数字微流控生物芯片的设计受到了广泛的关注。但是到目前为止,相应的设计任务,如绑定、调度、放置和路由通常是单独考虑的。此外,通常得到的只是启发式结果。在这项工作中,我们提出了一种单通道合成方案,该方案直接实现了芯片上所需的功能,同时保证了面积和/或时间方面的最小化。为此,利用了布尔可满足性解的演绎能力。实验表明了该方法如何利用各自设备的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The EDA challenges in the dark silicon era CAP: Communication aware programming Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects State-restrict MLC STT-RAM designs for high-reliable high-performance memory system OD3P: On-Demand Page Paired PCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1