Estimation-decoding on LDPC-based 2D-barcodes

W. Proß, M. Otesteanu, F. Quint
{"title":"Estimation-decoding on LDPC-based 2D-barcodes","authors":"W. Proß, M. Otesteanu, F. Quint","doi":"10.5220/0003457400340039","DOIUrl":null,"url":null,"abstract":"In this paper we propose an extension of the Estimation-Decoding algorithm for the decoding of our Data Matrix Code (DMC), which is based on Low-Density-Parity-Check (LDPC) codes and is designed for use in industrial environment. To include possible damages in the channel-model, a Markov-modulated Gaussian channel (MMGC) was chosen to represent everything in between the embossing of a LDPC-based DMC and the camera-based acquisition. The MMGC is based on a Hidden-Markov-Model (HMM) that turns into a two-dimensional model when used in the context of DMCs. The proposed ED2D-algorithm (Estimation-Decoding in two dimensions) is implemented to operate on a 2D-LDPC-Markov factor graph that comprises of a LDPC code's Tanner-graph and a 2D-HMM. For a subsequent comparison between different barcodes in industrial environment, a simulation of typical damages has been implemented. Tests showed a superior decoding behavior of our LDPC-based DMC decoded with the ED2D-decoder over the standard Reed-Solomon-based DMC.","PeriodicalId":103791,"journal":{"name":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","volume":"41 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003457400340039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose an extension of the Estimation-Decoding algorithm for the decoding of our Data Matrix Code (DMC), which is based on Low-Density-Parity-Check (LDPC) codes and is designed for use in industrial environment. To include possible damages in the channel-model, a Markov-modulated Gaussian channel (MMGC) was chosen to represent everything in between the embossing of a LDPC-based DMC and the camera-based acquisition. The MMGC is based on a Hidden-Markov-Model (HMM) that turns into a two-dimensional model when used in the context of DMCs. The proposed ED2D-algorithm (Estimation-Decoding in two dimensions) is implemented to operate on a 2D-LDPC-Markov factor graph that comprises of a LDPC code's Tanner-graph and a 2D-HMM. For a subsequent comparison between different barcodes in industrial environment, a simulation of typical damages has been implemented. Tests showed a superior decoding behavior of our LDPC-based DMC decoded with the ED2D-decoder over the standard Reed-Solomon-based DMC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ldpc的二维条码估计译码
本文提出了一种基于低密度奇偶校验(LDPC)码的数据矩阵码(DMC)译码的估计译码算法的扩展,并设计用于工业环境。为了在通道模型中包含可能的损坏,选择了一个马尔可夫调制高斯通道(MMGC)来表示基于ldpc的DMC的压纹和基于相机的采集之间的所有内容。MMGC基于隐马尔可夫模型(HMM),当在dmc上下文中使用时,隐马尔可夫模型会变成二维模型。提出的ed2d算法(二维估计-解码)在2d -LDPC-马尔可夫因子图上运行,该因子图由LDPC码的tanner图和2D-HMM组成。为了在工业环境中对不同条形码进行比较,对典型损伤进行了模拟。测试表明,与基于reed - solomon的标准DMC相比,使用ed2d解码器解码的基于ldpc的DMC具有更好的解码行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent topic visual language model for object categorization Optimal combination of low-level features for surveillance object retrieval Managing multiple media streams in HTML5: The IEEE 1599-2008 case study Automatic sound restoration system concepts and design Visual AER-based processing with convolutions for a parallel supercomputer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1