Solar Customer Detection based on Power Consumption Patterns

Ronnarong Dusitakorn, Sasiporn Usanavasin, W. Kongprawechnon
{"title":"Solar Customer Detection based on Power Consumption Patterns","authors":"Ronnarong Dusitakorn, Sasiporn Usanavasin, W. Kongprawechnon","doi":"10.1109/ecti-con49241.2020.9158228","DOIUrl":null,"url":null,"abstract":"Nowadays, solar photovoltaic (PV) systems are rapidly growing worldwide. The utility needs to grasp the changing trends for power system planning, and penalize an illegal installation solar system in order to prevent impacts on the grid. Therefore, this paper aims to detect a solar customer from weekly consumption patterns by three classification algorithms: Logistic regression, cosine similarity and K-nearest neighbors. Furthermore, the clustering methods, K-means and Density-based spatial clustering of applications with noise (DBSCAN), are utilized for similarity grouping, and computational cost reduction with the two stage clustering technique. The study has been conducted with the non-resident customers in Thailand, the classification results are discussed.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, solar photovoltaic (PV) systems are rapidly growing worldwide. The utility needs to grasp the changing trends for power system planning, and penalize an illegal installation solar system in order to prevent impacts on the grid. Therefore, this paper aims to detect a solar customer from weekly consumption patterns by three classification algorithms: Logistic regression, cosine similarity and K-nearest neighbors. Furthermore, the clustering methods, K-means and Density-based spatial clustering of applications with noise (DBSCAN), are utilized for similarity grouping, and computational cost reduction with the two stage clustering technique. The study has been conducted with the non-resident customers in Thailand, the classification results are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电力消耗模式的太阳能客户检测
目前,太阳能光伏(PV)系统在全球范围内迅速发展。公用事业公司需要把握电力系统规划的变化趋势,并对非法安装太阳能系统进行处罚,以防止对电网造成影响。因此,本文旨在通过三种分类算法从每周消费模式中检测太阳能客户:逻辑回归,余弦相似度和k近邻。利用K-means聚类方法和基于密度的带噪声应用空间聚类方法(DBSCAN)进行相似性分组,并利用两阶段聚类技术降低计算成本。对泰国非居民客户进行了研究,并对分类结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Tunable Biquadratic Digital Bandpass Filter Design for Spectrum Sensing in Cognitive Radio ElectricVehicle Simulator Using DC Drives Comparison of Machine Learning Algorithm’s on Self-Driving Car Navigation using Nvidia Jetson Nano Enhancing CNN Based Knowledge Graph Embedding Algorithms Using Auxiliary Vectors: A Case Study of Wordnet Knowledge Graph A Study of Radiated EMI Predictions from Measured Common-mode Currents for Switching Power Supplies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1