{"title":"Minimal Temperature of Thermoelectric Cooling: Adiabatic Approximation","authors":"Y. Gurevich, I. Lashkevych, G. Logvinov","doi":"10.1109/ICT.2006.331364","DOIUrl":null,"url":null,"abstract":"Energy balance equation and the boundary conditions to it are obtained in the general case. It is shown that only two sources of heat occur. There are the Joule source of heat and the Thomson source of heat. Any Peltier's source of heating or cooling is absent. It is shown that the Thomson's coefficient coincides with the Seebec coefficient. The one-dimensional model of thermoelectric module is suggested, and the temperature distribution with its minimal value are obtained in it for thermoelectric cooling. This model represents the structure composed from the different and homogeneous semiconductors. It is supposed that cooling occurs due to the classic Peltier's effect, and the thermoelectric module operates in the mode when no external thermal load is applied","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Energy balance equation and the boundary conditions to it are obtained in the general case. It is shown that only two sources of heat occur. There are the Joule source of heat and the Thomson source of heat. Any Peltier's source of heating or cooling is absent. It is shown that the Thomson's coefficient coincides with the Seebec coefficient. The one-dimensional model of thermoelectric module is suggested, and the temperature distribution with its minimal value are obtained in it for thermoelectric cooling. This model represents the structure composed from the different and homogeneous semiconductors. It is supposed that cooling occurs due to the classic Peltier's effect, and the thermoelectric module operates in the mode when no external thermal load is applied