Low power GPGPU computation with imprecise hardware

Hang Zhang, M. Putic, J. Lach
{"title":"Low power GPGPU computation with imprecise hardware","authors":"Hang Zhang, M. Putic, J. Lach","doi":"10.1145/2593069.2593156","DOIUrl":null,"url":null,"abstract":"Massively parallel computation in GPUs significantly boosts performance of compute-intensive applications but creates power and thermal issues that limit further performance scaling. This paper demonstrates significant GPGPU power savings by relaxing application accuracy requirements and enabling the use of low power imprecise hardware (IHW). A synthesized set of novel imprecise floating point arithmetic units is presented. GPGPU-Sim and GPUWattch are used to estimate impacts of IHW units on output quality and system-level power consumption, providing a quality-power tradeoff model for application-specific optimization. Experimental results for a 45 nm process show up to 32% power savings with negligible impacts on output quality.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Massively parallel computation in GPUs significantly boosts performance of compute-intensive applications but creates power and thermal issues that limit further performance scaling. This paper demonstrates significant GPGPU power savings by relaxing application accuracy requirements and enabling the use of low power imprecise hardware (IHW). A synthesized set of novel imprecise floating point arithmetic units is presented. GPGPU-Sim and GPUWattch are used to estimate impacts of IHW units on output quality and system-level power consumption, providing a quality-power tradeoff model for application-specific optimization. Experimental results for a 45 nm process show up to 32% power savings with negligible impacts on output quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gpu中的大规模并行计算显著提高了计算密集型应用程序的性能,但也产生了功耗和热问题,限制了进一步的性能扩展。本文通过放松应用精度要求和允许使用低功耗不精确硬件(IHW)来演示显著的GPGPU功耗节省。提出了一种新型非精确浮点运算单元的合成集。GPGPU-Sim和gpuwatch用于估计IHW单元对输出质量和系统级功耗的影响,为特定应用的优化提供质量-功率权衡模型。45纳米制程的实验结果显示,在输出质量影响可以忽略不计的情况下,可节省高达32%的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The EDA challenges in the dark silicon era CAP: Communication aware programming Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects State-restrict MLC STT-RAM designs for high-reliable high-performance memory system OD3P: On-Demand Page Paired PCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1