{"title":"Low power GPGPU computation with imprecise hardware","authors":"Hang Zhang, M. Putic, J. Lach","doi":"10.1145/2593069.2593156","DOIUrl":null,"url":null,"abstract":"Massively parallel computation in GPUs significantly boosts performance of compute-intensive applications but creates power and thermal issues that limit further performance scaling. This paper demonstrates significant GPGPU power savings by relaxing application accuracy requirements and enabling the use of low power imprecise hardware (IHW). A synthesized set of novel imprecise floating point arithmetic units is presented. GPGPU-Sim and GPUWattch are used to estimate impacts of IHW units on output quality and system-level power consumption, providing a quality-power tradeoff model for application-specific optimization. Experimental results for a 45 nm process show up to 32% power savings with negligible impacts on output quality.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48
Abstract
Massively parallel computation in GPUs significantly boosts performance of compute-intensive applications but creates power and thermal issues that limit further performance scaling. This paper demonstrates significant GPGPU power savings by relaxing application accuracy requirements and enabling the use of low power imprecise hardware (IHW). A synthesized set of novel imprecise floating point arithmetic units is presented. GPGPU-Sim and GPUWattch are used to estimate impacts of IHW units on output quality and system-level power consumption, providing a quality-power tradeoff model for application-specific optimization. Experimental results for a 45 nm process show up to 32% power savings with negligible impacts on output quality.