RISP: A Reconfigurable In-Storage Processing Framework with Energy-Awareness

Xiaojia Song, T. Xie, Wen Pan
{"title":"RISP: A Reconfigurable In-Storage Processing Framework with Energy-Awareness","authors":"Xiaojia Song, T. Xie, Wen Pan","doi":"10.1109/CCGRID.2018.00034","DOIUrl":null,"url":null,"abstract":"Existing in-storage processing (ISP) techniques mainly focus on maximizing data processing rate by always utilizing total storage data processing resources for all applications. We find that this \"always running in full gear\" strategy wastes energy for some applications with a low data processing complexity. In this paper we propose RISP (Reconfigurable ISP), an energy-aware reconfigurable ISP framework that employs FPGA as data processing cells and NVM controllers. It can reconfigure storage data processing resources to achieve a high energy-efficiency without any performance degradation for big data analysis applications. RISP is modeled and then validated on an FPGA board. Experimental results show that compared with traditional host-CPU based computing RISP (with 16 channels or more) improves performance by 1.6-25.4× while saving energy by a factor of 2.2-161. Further, its reconfigurability can provide up to 77.2% additional energy saving by judiciously enabling data processing resources that are sufficient for an application.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Existing in-storage processing (ISP) techniques mainly focus on maximizing data processing rate by always utilizing total storage data processing resources for all applications. We find that this "always running in full gear" strategy wastes energy for some applications with a low data processing complexity. In this paper we propose RISP (Reconfigurable ISP), an energy-aware reconfigurable ISP framework that employs FPGA as data processing cells and NVM controllers. It can reconfigure storage data processing resources to achieve a high energy-efficiency without any performance degradation for big data analysis applications. RISP is modeled and then validated on an FPGA board. Experimental results show that compared with traditional host-CPU based computing RISP (with 16 channels or more) improves performance by 1.6-25.4× while saving energy by a factor of 2.2-161. Further, its reconfigurability can provide up to 77.2% additional energy saving by judiciously enabling data processing resources that are sufficient for an application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RISP:具有能量感知的可重构存储处理框架
现有的存储内处理(ISP)技术主要是通过对所有应用程序始终使用全部存储数据处理资源来实现数据处理速率的最大化。我们发现这种“总是全速运行”的策略对于一些数据处理复杂性较低的应用程序来说浪费了能源。在本文中,我们提出了一种能量感知的可重构ISP框架RISP(可重构ISP),它采用FPGA作为数据处理单元和NVM控制器。它可以重新配置存储数据处理资源,在不降低大数据分析应用性能的情况下实现高能效。建立了RISP模型,并在FPGA板上进行了验证。实验结果表明,与传统的基于主机- cpu的计算相比,RISP(16通道及以上)性能提高1.6-25.4倍,节能2.2-161倍。此外,通过明智地启用对应用程序足够的数据处理资源,其可重构性可以提供高达77.2%的额外节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1