J. Norgard, M. Wicks, W. Baldygo, K. Magde, W. Moore, A. Drozd, R. Musselman
{"title":"Distributed/embedded sub-surface sensors for imaging buried objects with reduced mutual coupling and suppressed electromagnetic emissions","authors":"J. Norgard, M. Wicks, W. Baldygo, K. Magde, W. Moore, A. Drozd, R. Musselman","doi":"10.1109/ICEAA.2007.4387329","DOIUrl":null,"url":null,"abstract":"The proliferation of strategic subsurface targets has increased the need for remote sensing techniques providing for the accurate detection and identification of deeply buried objects. A new RF tomographic technique is proposed in this concept paper for developing RF CAT Scans of buried objects using spectral, spatial/angular, and polarization diversity. This tomographic imaging technique, developed by Wicks and presented in GPR 2004 [1], uses embedded subsurface radiators, delivered by earth-penetrating non-explosive, electronic \"e-bombs\", as the source of strong underground radiated transmissions. Distributed surface-contact sensors are used to collect the tomographic data for relay to a UAV and transmission to a remote site. Three-dimensional imaging algorithms have been developed to detect, image, and characterize deeply buried targets. By embedding the transmitters underground, reduced mutual coupling and EM emissions, and improved signal-to-noise ratios can be achieved. Simple surface SAR experiments over deep mine shafts have been performed to validate the 3D processing algorithms using 2D surface SAR sensor data. WIPL-D models have also been used to simulate the embedded and distributed sensors and to verify the significant enhancement in the received signal-to-noise ratio obtained by burying radiators under the surface.","PeriodicalId":142822,"journal":{"name":"2007 International Waveform Diversity and Design Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Waveform Diversity and Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The proliferation of strategic subsurface targets has increased the need for remote sensing techniques providing for the accurate detection and identification of deeply buried objects. A new RF tomographic technique is proposed in this concept paper for developing RF CAT Scans of buried objects using spectral, spatial/angular, and polarization diversity. This tomographic imaging technique, developed by Wicks and presented in GPR 2004 [1], uses embedded subsurface radiators, delivered by earth-penetrating non-explosive, electronic "e-bombs", as the source of strong underground radiated transmissions. Distributed surface-contact sensors are used to collect the tomographic data for relay to a UAV and transmission to a remote site. Three-dimensional imaging algorithms have been developed to detect, image, and characterize deeply buried targets. By embedding the transmitters underground, reduced mutual coupling and EM emissions, and improved signal-to-noise ratios can be achieved. Simple surface SAR experiments over deep mine shafts have been performed to validate the 3D processing algorithms using 2D surface SAR sensor data. WIPL-D models have also been used to simulate the embedded and distributed sensors and to verify the significant enhancement in the received signal-to-noise ratio obtained by burying radiators under the surface.