Novel Localized-SOI MOSFET's Combining the Advantages of SOI and Bulk Substrates for Highly-Scaled Devices

Ru Huang, Yu Tian, Han Xiao, Weihai Bu, Chuguang Feng, M. Chan, Xing Zhang, Yangyuan Wang
{"title":"Novel Localized-SOI MOSFET's Combining the Advantages of SOI and Bulk Substrates for Highly-Scaled Devices","authors":"Ru Huang, Yu Tian, Han Xiao, Weihai Bu, Chuguang Feng, M. Chan, Xing Zhang, Yangyuan Wang","doi":"10.1109/EDSSC.2005.1635211","DOIUrl":null,"url":null,"abstract":"In this paper two kinds of novel localized-SOI structure devices, named as Quasi-SOI MOSFET and source-drain -on-nothing(SDON)/source-drain-on-insulator (SDOI) MOSFET, are demonstrated which can combine the advantages of SOI and bulk substrates. In the Quasi-SOI structure with the source/drain regions quasi-surrounded with insulator and the channel region directly connected with the bulk substrate, short channel effects (SCE), parasitic capacitance and self-heating effects (SHE) can be effectively reduced. The problem of degraded mobility and increased threshold voltage due to ultra-thin body in UTB SOI MOSFET's can also be solved. A method to fabricate the Quasi-SOI MOSFET is put forward. Process-device co-simulation results further show good scaling capability and excellent heat dissipation of the Quasi-SOI devices. In the SDON/SDOI device with the recessed S/D extension regions and source-drain staying on the partially buried layers, the advantages of quasi-SOI MOSFET can be maintained with the parasitic capacitance further reduced and the fabrication technology basically compatible with the standard CMOS technology. The proposed two structures can be considered as good candidates for highly-scaled devices.","PeriodicalId":429314,"journal":{"name":"2005 IEEE Conference on Electron Devices and Solid-State Circuits","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Conference on Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2005.1635211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper two kinds of novel localized-SOI structure devices, named as Quasi-SOI MOSFET and source-drain -on-nothing(SDON)/source-drain-on-insulator (SDOI) MOSFET, are demonstrated which can combine the advantages of SOI and bulk substrates. In the Quasi-SOI structure with the source/drain regions quasi-surrounded with insulator and the channel region directly connected with the bulk substrate, short channel effects (SCE), parasitic capacitance and self-heating effects (SHE) can be effectively reduced. The problem of degraded mobility and increased threshold voltage due to ultra-thin body in UTB SOI MOSFET's can also be solved. A method to fabricate the Quasi-SOI MOSFET is put forward. Process-device co-simulation results further show good scaling capability and excellent heat dissipation of the Quasi-SOI devices. In the SDON/SDOI device with the recessed S/D extension regions and source-drain staying on the partially buried layers, the advantages of quasi-SOI MOSFET can be maintained with the parasitic capacitance further reduced and the fabrication technology basically compatible with the standard CMOS technology. The proposed two structures can be considered as good candidates for highly-scaled devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合SOI和大块基板优势的新型局域化SOI MOSFET用于大规模器件
本文展示了两种新型局域化SOI结构器件,即准SOI MOSFET和无源漏极(SDON)/绝缘子漏极(SDOI) MOSFET,它们结合了SOI和块状衬底的优点。在源极/漏极区被绝缘体包围,沟道区与体基板直接相连的准soi结构中,可以有效地降低短沟道效应(SCE)、寄生电容和自热效应(SHE)。UTB SOI MOSFET的超薄体导致迁移率下降和阈值电压升高的问题也可以得到解决。提出了一种制备准soi MOSFET的方法。制程-器件联合仿真结果进一步表明,准soi器件具有良好的缩放性能和良好的散热性能。在嵌入S/D扩展区、源极漏极停留在部分埋置层的SDON/SDOI器件中,寄生电容进一步减小,且制造工艺与标准CMOS工艺基本兼容,保持了准soi MOSFET的优势。提出的两种结构可以被认为是高规模器件的良好候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-voltage embedded RAMs in the nanometer era Design of a Fully Differential Gain-Boosted Folded-Cascode Op Amp with Settling Performance Optimization Technology Platform Based On Comprehensive Device Modeling For RF SoC Design A Simple Model for Channel Noise of Deep Submicron MOSFETs A Low Power CMOS Full-Band UWB Power Amplifier Using Wideband RLC Matching Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1