Changfeng Sun, Han Liu, Meng Liu, Z. Ren, Tian Gan, Liqiang Nie
{"title":"LARA: Attribute-to-feature Adversarial Learning for New-item Recommendation","authors":"Changfeng Sun, Han Liu, Meng Liu, Z. Ren, Tian Gan, Liqiang Nie","doi":"10.1145/3336191.3371805","DOIUrl":null,"url":null,"abstract":"Recommending new items in real-world e-commerce portals is a challenging problem as the cold start phenomenon, i.e., lacks of user-item interactions. To address this problem, we propose a novel recommendation model, i.e., adversarial neural network with multiple generators, to generate users from multiple perspectives of items' attributes. Namely, the generated users are represented by attribute-level features. As both users and items are attribute-level representations, we can implicitly obtain user-item attribute-level interaction information. In light of this, the new item can be recommended to users based on attribute-level similarity. Extensive experimental results on two item cold-start scenarios, movie and goods recommendation, verify the effectiveness of our proposed model as compared to state-of-the-art baselines.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Recommending new items in real-world e-commerce portals is a challenging problem as the cold start phenomenon, i.e., lacks of user-item interactions. To address this problem, we propose a novel recommendation model, i.e., adversarial neural network with multiple generators, to generate users from multiple perspectives of items' attributes. Namely, the generated users are represented by attribute-level features. As both users and items are attribute-level representations, we can implicitly obtain user-item attribute-level interaction information. In light of this, the new item can be recommended to users based on attribute-level similarity. Extensive experimental results on two item cold-start scenarios, movie and goods recommendation, verify the effectiveness of our proposed model as compared to state-of-the-art baselines.