LARA: Attribute-to-feature Adversarial Learning for New-item Recommendation

Changfeng Sun, Han Liu, Meng Liu, Z. Ren, Tian Gan, Liqiang Nie
{"title":"LARA: Attribute-to-feature Adversarial Learning for New-item Recommendation","authors":"Changfeng Sun, Han Liu, Meng Liu, Z. Ren, Tian Gan, Liqiang Nie","doi":"10.1145/3336191.3371805","DOIUrl":null,"url":null,"abstract":"Recommending new items in real-world e-commerce portals is a challenging problem as the cold start phenomenon, i.e., lacks of user-item interactions. To address this problem, we propose a novel recommendation model, i.e., adversarial neural network with multiple generators, to generate users from multiple perspectives of items' attributes. Namely, the generated users are represented by attribute-level features. As both users and items are attribute-level representations, we can implicitly obtain user-item attribute-level interaction information. In light of this, the new item can be recommended to users based on attribute-level similarity. Extensive experimental results on two item cold-start scenarios, movie and goods recommendation, verify the effectiveness of our proposed model as compared to state-of-the-art baselines.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Recommending new items in real-world e-commerce portals is a challenging problem as the cold start phenomenon, i.e., lacks of user-item interactions. To address this problem, we propose a novel recommendation model, i.e., adversarial neural network with multiple generators, to generate users from multiple perspectives of items' attributes. Namely, the generated users are represented by attribute-level features. As both users and items are attribute-level representations, we can implicitly obtain user-item attribute-level interaction information. In light of this, the new item can be recommended to users based on attribute-level similarity. Extensive experimental results on two item cold-start scenarios, movie and goods recommendation, verify the effectiveness of our proposed model as compared to state-of-the-art baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对新项目推荐的属性-特征对抗性学习
在现实世界的电子商务门户网站中,推荐新商品是一个具有挑战性的问题,因为存在冷启动现象,即缺乏用户与商品的交互。为了解决这个问题,我们提出了一种新的推荐模型,即具有多个生成器的对抗神经网络,从项目属性的多个角度生成用户。也就是说,生成的用户由属性级特征表示。由于用户和项目都是属性级表示,我们可以隐式地获得用户-项目属性级交互信息。因此,可以根据属性级相似性向用户推荐新项目。与最先进的基线相比,在电影和商品推荐两种项目冷启动场景下的大量实验结果验证了我们提出的模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1