MEMS infrared approaches to detector based on nonlinear oscillation and wavelength selective emitter using surface plasmon polariton

M. Sasaki, S. Kumagai
{"title":"MEMS infrared approaches to detector based on nonlinear oscillation and wavelength selective emitter using surface plasmon polariton","authors":"M. Sasaki, S. Kumagai","doi":"10.1117/12.2044314","DOIUrl":null,"url":null,"abstract":"The suspended MEMS structure is suitable for reducing the energy loss due to the thermal conduction. There is the possibility that IR photon energy can be well-controlled to generate some physical effects. A new method bases on the nonlinear oscillation for the detector. The thin film torsional spring exhibits a large hard spring effect when the deflection occurs in the out-of-plane direction of the film. When IR is absorbed, the resonator bends due to the thermal expansion. The torsional spring becomes harder increasing the resonant frequency. The frequency measurement is suited for the precise sensing. The device response is measured using the laser (wavelength of 650nm). The resonant frequency is 88-94kHz. Q factor is about 1600 in vacuum (1Pa). The sensitivity is -0.144[kHz/(kW/m2)]. As for the emitter, nondispersive IR gas sensor is considered. The molecules have their intrinsic absorptions. CO2 absorbs the wavelength 4.2- 4.3μm. The major incandescent light bulbs have the broad spectrum emitting IR which is not used for gas sensing. The wavelength selectivity at the gas bandwidth will improve the efficiency. A new principle uses the microheater placed facing to the grating. SPP is excited carrying IR energy on the grating surface. IR emission is the reverse process of excitation occurring at the output end. The emission spectra show SPP related peak having the width of 190nm. When the input power increases from 0.3 to 1.9W, the peak at wavelength of 3.5μm becomes clearer.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2044314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The suspended MEMS structure is suitable for reducing the energy loss due to the thermal conduction. There is the possibility that IR photon energy can be well-controlled to generate some physical effects. A new method bases on the nonlinear oscillation for the detector. The thin film torsional spring exhibits a large hard spring effect when the deflection occurs in the out-of-plane direction of the film. When IR is absorbed, the resonator bends due to the thermal expansion. The torsional spring becomes harder increasing the resonant frequency. The frequency measurement is suited for the precise sensing. The device response is measured using the laser (wavelength of 650nm). The resonant frequency is 88-94kHz. Q factor is about 1600 in vacuum (1Pa). The sensitivity is -0.144[kHz/(kW/m2)]. As for the emitter, nondispersive IR gas sensor is considered. The molecules have their intrinsic absorptions. CO2 absorbs the wavelength 4.2- 4.3μm. The major incandescent light bulbs have the broad spectrum emitting IR which is not used for gas sensing. The wavelength selectivity at the gas bandwidth will improve the efficiency. A new principle uses the microheater placed facing to the grating. SPP is excited carrying IR energy on the grating surface. IR emission is the reverse process of excitation occurring at the output end. The emission spectra show SPP related peak having the width of 190nm. When the input power increases from 0.3 to 1.9W, the peak at wavelength of 3.5μm becomes clearer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性振荡的MEMS红外探测器和基于表面等离子激元的波长选择发射器
悬浮式MEMS结构适用于减少热传导造成的能量损失。有可能红外光子能量可以很好地控制,以产生一些物理效应。提出了一种基于探测器非线性振荡的新方法。当挠曲发生在薄膜的面外方向时,薄膜扭转弹簧表现出较大的硬弹簧效应。当红外被吸收时,谐振腔由于热膨胀而弯曲。随着共振频率的增加,扭转弹簧变硬。频率测量适合于精密传感。使用激光(波长650nm)测量器件响应。谐振频率为88-94kHz。在真空(1Pa)下,Q因子约为1600。灵敏度为-0.144[kHz/(kW/m2)]。发射器采用非色散红外气体传感器。分子有其固有的吸收率。CO2吸收的波长为4.2 ~ 4.3μm。主要的白炽灯泡具有广谱发射红外,不用于气体传感。气体带宽处的波长选择性将提高效率。一种新的原理是将微加热器面向光栅放置。SPP在光栅表面携带红外能量被激发。红外发射是在输出端发生的反向激发过程。发射光谱显示SPP相关峰宽度为190nm。当输入功率从0.3 w增加到1.9W时,3.5μm波长处的峰值更加清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optomechanical cantilever device for displacement sensing and variable attenuator Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments Integration of real-time 3D image acquisition and multiview 3D display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1