Isolating the negative stiffness region of a buckled Si/SiO2 membrane

Kyle K. Ziegler, R. Lake, R. Coutu
{"title":"Isolating the negative stiffness region of a buckled Si/SiO2 membrane","authors":"Kyle K. Ziegler, R. Lake, R. Coutu","doi":"10.1117/12.2037383","DOIUrl":null,"url":null,"abstract":"Negative stiffness can provide a method of altering the stiffness of a device without changing its geometry. The silicon/ silicon dioxide (Si/SiO2) membrane presented in this research utilizes buckling resulting from compressive residual stress. A transversely actuated buckled membrane displays properties similar to a linear regressive spring, which include a positive and negative stiffness region. Cantilever beams were used to restrict the outward displacement of the membrane and force it to actuate only in its negative stiffness region. Analytical equations were utilized to estimate the amount of outward deflection by the membrane and to estimate the amount of reduced deflection required for the device to display only negative stiffness characteristics. Devices were tested using a force sensor actuated by a piezo controller. Interferometric imaging confirmed the cantilevers ability to reduce the buckling displacement in the membrane up to 30%.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2037383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Negative stiffness can provide a method of altering the stiffness of a device without changing its geometry. The silicon/ silicon dioxide (Si/SiO2) membrane presented in this research utilizes buckling resulting from compressive residual stress. A transversely actuated buckled membrane displays properties similar to a linear regressive spring, which include a positive and negative stiffness region. Cantilever beams were used to restrict the outward displacement of the membrane and force it to actuate only in its negative stiffness region. Analytical equations were utilized to estimate the amount of outward deflection by the membrane and to estimate the amount of reduced deflection required for the device to display only negative stiffness characteristics. Devices were tested using a force sensor actuated by a piezo controller. Interferometric imaging confirmed the cantilevers ability to reduce the buckling displacement in the membrane up to 30%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隔离屈曲Si/SiO2膜的负刚度区
负刚度可以提供一种在不改变其几何形状的情况下改变装置刚度的方法。本研究中提出的硅/二氧化硅(Si/SiO2)膜利用压缩残余应力引起的屈曲。横向驱动的屈曲膜显示类似于线性回归弹簧的特性,其中包括正刚度和负刚度区域。悬臂梁用于限制膜的向外位移,并迫使其仅在其负刚度区域驱动。利用解析方程来估计膜向外偏转的量,并估计设备仅显示负刚度特性所需的减少偏转的量。设备使用由压电控制器驱动的力传感器进行测试。干涉成像证实了悬臂梁能够将膜中的屈曲位移减少30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optomechanical cantilever device for displacement sensing and variable attenuator Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments Integration of real-time 3D image acquisition and multiview 3D display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1