Extracting Irregular Datasets in University Admission Statistics using Text Mining and Benford's Law

Yusuke Tozaki, Takahiko Suzuki, Tsunenori Mine, S. Hirokawa
{"title":"Extracting Irregular Datasets in University Admission Statistics using Text Mining and Benford's Law","authors":"Yusuke Tozaki, Takahiko Suzuki, Tsunenori Mine, S. Hirokawa","doi":"10.1109/IIAI-AAI.2019.00207","DOIUrl":null,"url":null,"abstract":"It is known as Benford's law that the distribution of the first digits forms a specific shape for natural numerical datasets. Deviation from the Benford's distribution indicates the irregularity of the dataset. However, it does not tell any clue to interpret the reason of irregularity. The present paper constructs a search engine of cells that appear in tables by correlating a cell with the words in the title of row or column or in the explanation of the table. We generate an exhaustive dataset of cells for testing irregularity by enumerating the search conditions. We applied the method to the number of applicants, the number of candidates, and the number of successful applicants in each department of 565 private universities in Japan. We confirmed the effectiveness of the proposed method by extracting the characteristics of the irregular datasets.","PeriodicalId":136474,"journal":{"name":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2019.00207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is known as Benford's law that the distribution of the first digits forms a specific shape for natural numerical datasets. Deviation from the Benford's distribution indicates the irregularity of the dataset. However, it does not tell any clue to interpret the reason of irregularity. The present paper constructs a search engine of cells that appear in tables by correlating a cell with the words in the title of row or column or in the explanation of the table. We generate an exhaustive dataset of cells for testing irregularity by enumerating the search conditions. We applied the method to the number of applicants, the number of candidates, and the number of successful applicants in each department of 565 private universities in Japan. We confirmed the effectiveness of the proposed method by extracting the characteristics of the irregular datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用文本挖掘和Benford定律提取大学录取统计中的不规则数据集
对于自然数值数据集,第一位数字的分布形成了特定的形状,这被称为本福德定律。偏离本福德分布表示数据集的不规则性。然而,它并没有告诉任何线索来解释不正常的原因。本文通过将单元格与表的行、列标题或表的说明中的单词相关联,构建了一个表中出现的单元格搜索引擎。我们通过列举搜索条件来生成一个详尽的细胞数据集,用于测试不规则性。我们对日本565所私立大学的报考人数、合格者人数、各专业合格者人数等进行了分析。通过对不规则数据集的特征提取,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a Multifaceted Evaluation System of Students' Learning Outcomes in Medical School Cognitive Acceleration Program in Undergraduate School Linking Business Strategies and System Demands Using GQM+Strategies and Systems Modeling Language Bubbloid Algorithm: A Simple Method for Generating Bubble-like Line Drawings Shape Recovery of Polyp Using Blood Vessel Detection and Matching Estimation by U-Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1