Bayesian Model Calibration for Extrapolative Prediction via Gibbs Posteriors.

arXiv: Methodology Pub Date : 2019-09-01 DOI:10.2172/1763261
S. Woody, N. Ghaffari, L. Hund
{"title":"Bayesian Model Calibration for Extrapolative Prediction via Gibbs Posteriors.","authors":"S. Woody, N. Ghaffari, L. Hund","doi":"10.2172/1763261","DOIUrl":null,"url":null,"abstract":"The current standard Bayesian approach to model calibration, which assigns a Gaussian process prior to the discrepancy term, often suffers from issues of unidentifiability and computational complexity and instability. When the goal is to quantify uncertainty in physical parameters for extrapolative prediction, then there is no need to perform inference on the discrepancy term. With this in mind, we introduce Gibbs posteriors as an alternative Bayesian method for model calibration, which updates the prior with a loss function connecting the data to the parameter. The target of inference is the physical parameter value which minimizes the expected loss. We propose to tune the loss scale of the Gibbs posterior to maintain nominal frequentist coverage under assumptions of the form of model discrepancy, and present a bootstrap implementation for approximating coverage rates. Our approach is highly modular, allowing an analyst to easily encode a wide variety of such assumptions. Furthermore, we provide a principled method of combining posteriors calculated from data subsets. We apply our methods to data from an experiment measuring the material properties of tantalum.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1763261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The current standard Bayesian approach to model calibration, which assigns a Gaussian process prior to the discrepancy term, often suffers from issues of unidentifiability and computational complexity and instability. When the goal is to quantify uncertainty in physical parameters for extrapolative prediction, then there is no need to perform inference on the discrepancy term. With this in mind, we introduce Gibbs posteriors as an alternative Bayesian method for model calibration, which updates the prior with a loss function connecting the data to the parameter. The target of inference is the physical parameter value which minimizes the expected loss. We propose to tune the loss scale of the Gibbs posterior to maintain nominal frequentist coverage under assumptions of the form of model discrepancy, and present a bootstrap implementation for approximating coverage rates. Our approach is highly modular, allowing an analyst to easily encode a wide variety of such assumptions. Furthermore, we provide a principled method of combining posteriors calculated from data subsets. We apply our methods to data from an experiment measuring the material properties of tantalum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gibbs后验外推预测的贝叶斯模型校正。
目前标准的贝叶斯模型校准方法,在差异项之前分配一个高斯过程,经常存在不可识别性、计算复杂性和不稳定性的问题。当目标是量化物理参数中的不确定性进行外推预测时,则不需要对差异项进行推理。考虑到这一点,我们引入吉布斯后验作为模型校准的替代贝叶斯方法,它通过将数据连接到参数的损失函数来更新先验。推理的目标是使预期损失最小的物理参数值。我们建议调整Gibbs后验的损失尺度,以在模型差异形式的假设下保持名义频率覆盖,并提出近似覆盖率的自举实现。我们的方法是高度模块化的,允许分析人员轻松地对各种各样的假设进行编码。此外,我们提供了一种结合从数据子集计算的后验的原则方法。我们将我们的方法应用于测量钽材料性质的实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1