{"title":"Modeling and simulation of electromechanical-contact based elastomeric pressure sensor","authors":"Zhibo Chen, Wei Huang, Xinfeng Zhang, M. Yuen","doi":"10.1109/EUROSIME.2016.7463366","DOIUrl":null,"url":null,"abstract":"Elastomeric electric-contact pressure sensors in wearable devices for monitoring physiological signals have much broader potential. In order to design and develop better pressure sensors, the simulation of the electric contact - pressure response is very important. However, due to the large deformation of the patterned surface, it is difficult to model the specific contact surface by using the conventional electric-contact theory only. In the present study, a hybrid electromechanical-contact resistance model was developed to study the strain and stress distributions on the microstructured elastomeric electric-contact surface subjected to pressure. In our new model, the contact resistance in an epidermal pressure sensor can be modeled easily and accurately with a better result. Our model can be used to optimize the sensor design and evaluate the sensing performance of pressure sensors.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Elastomeric electric-contact pressure sensors in wearable devices for monitoring physiological signals have much broader potential. In order to design and develop better pressure sensors, the simulation of the electric contact - pressure response is very important. However, due to the large deformation of the patterned surface, it is difficult to model the specific contact surface by using the conventional electric-contact theory only. In the present study, a hybrid electromechanical-contact resistance model was developed to study the strain and stress distributions on the microstructured elastomeric electric-contact surface subjected to pressure. In our new model, the contact resistance in an epidermal pressure sensor can be modeled easily and accurately with a better result. Our model can be used to optimize the sensor design and evaluate the sensing performance of pressure sensors.