Recommendation Systems : A Comparative Analysis of Classical and Deep Learning Approaches

Mehbooba P. Shareef, Linda Rose Jimson, B. R. Jose
{"title":"Recommendation Systems : A Comparative Analysis of Classical and Deep Learning Approaches","authors":"Mehbooba P. Shareef, Linda Rose Jimson, B. R. Jose","doi":"10.1109/ICSCC51209.2021.9528193","DOIUrl":null,"url":null,"abstract":"Recommendation systems bring in the lion’s share of e-business. Personalised recommendations make it easy for the user to take decisions quickly since the top recommended items will be produced after analysing user preferences, past user actions and current market trends. A very good recommendation engine is necessary for the e-business to ensure huge revenue. In this paper we quantitatively analyse the research works done on recommendation systems in the last decade(2010-2020) and qualitatively analyze the current state of the art(2018-2021). We find that towards the end of the last decade, deep learning based recommendations attracted more attention due to their ability to make more accurate recommendations.","PeriodicalId":382982,"journal":{"name":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCC51209.2021.9528193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommendation systems bring in the lion’s share of e-business. Personalised recommendations make it easy for the user to take decisions quickly since the top recommended items will be produced after analysing user preferences, past user actions and current market trends. A very good recommendation engine is necessary for the e-business to ensure huge revenue. In this paper we quantitatively analyse the research works done on recommendation systems in the last decade(2010-2020) and qualitatively analyze the current state of the art(2018-2021). We find that towards the end of the last decade, deep learning based recommendations attracted more attention due to their ability to make more accurate recommendations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推荐系统:经典和深度学习方法的比较分析
推荐系统带来了电子商务的最大份额。个性化的推荐可以让用户快速做出决定,因为在分析了用户的偏好、过去的用户行为和当前的市场趋势后,会产生最受推荐的项目。一个非常好的推荐引擎是电子商务确保巨大收益的必要条件。在本文中,我们定量分析了过去十年(2010-2020)在推荐系统方面所做的研究工作,并定性分析了当前的技术状况(2018-2021)。我们发现,在过去的十年中,基于深度学习的推荐由于能够做出更准确的推荐而吸引了更多的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FYEO : A Character Level Model For Lip Reading Parameter Dependencies and Optimization of True Random Number Generator (TRNG) using Genetic Algorithm (GA) Chaotic Time Series Prediction Model for Fractional-Order Duffing's Oscillator Segmentation of Brain Tumour in MR Images Using Modified Deep Learning Network Classification of Power Quality Disturbances in Emerging Power System with Distributed Generation Using Space Phasor Model and Normalized Cross Correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1