Thermodynamic, Thermal and Elastic Properties of Titanium Nitride TiN: Comparison of Various Data and Determination of the Most Reliable Values

A. Kozma
{"title":"Thermodynamic, Thermal and Elastic Properties of Titanium Nitride TiN: Comparison of Various Data and Determination of the Most Reliable Values","authors":"A. Kozma","doi":"10.21303/2585-6847.2020.001475","DOIUrl":null,"url":null,"abstract":"The analysis of literary data on thermodynamic, thermal and elastic properties of titanium nitride TiN which included values Debye temperature θD, volume coefficient of thermal expansion αV and bulk modulus B under standard conditions is carried out. It has been shown that the known data have a significant spread of values from 20 to 43 %. The 8 most rational variants of optimizing calculations are proposed, which make it possible to reveal the most reliable values of some TiN parameters. At the same time, the minimum and maximum values of θD and αV were used from literary sources, as well as the least contradictory data on isobaric heat capacity Cp, melting temperature Tm.p and density d of TiN. To improve the calculated results, the values of θD(TiN) determined using the methods of Magnus ‒ Lindeman and Debye were also used. The Mayer’s relation was the basic test expression. The obtained values of the bulk modulus were compared with the literature data. This made it possible to distinguish the least and most reliable values of αV and θD, as well as make a refinement correction for the last value. As a result, it was found that under standard conditions, the value of θD(TiN) close to the optimal should be within 746‒769 K, and for its isochoric heat capacity CV ‒ in the range 36.55‒37.19 J/(mol×K). The range of values, after optimization, does not exceed 3 %, unlike the 20 % available in the literature. A more accurate definition of Debye temperature for TiN needs to radically refine the values of its αV and B","PeriodicalId":180833,"journal":{"name":"Mechanical Properties & Deformation of Materials eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Properties & Deformation of Materials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21303/2585-6847.2020.001475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The analysis of literary data on thermodynamic, thermal and elastic properties of titanium nitride TiN which included values Debye temperature θD, volume coefficient of thermal expansion αV and bulk modulus B under standard conditions is carried out. It has been shown that the known data have a significant spread of values from 20 to 43 %. The 8 most rational variants of optimizing calculations are proposed, which make it possible to reveal the most reliable values of some TiN parameters. At the same time, the minimum and maximum values of θD and αV were used from literary sources, as well as the least contradictory data on isobaric heat capacity Cp, melting temperature Tm.p and density d of TiN. To improve the calculated results, the values of θD(TiN) determined using the methods of Magnus ‒ Lindeman and Debye were also used. The Mayer’s relation was the basic test expression. The obtained values of the bulk modulus were compared with the literature data. This made it possible to distinguish the least and most reliable values of αV and θD, as well as make a refinement correction for the last value. As a result, it was found that under standard conditions, the value of θD(TiN) close to the optimal should be within 746‒769 K, and for its isochoric heat capacity CV ‒ in the range 36.55‒37.19 J/(mol×K). The range of values, after optimization, does not exceed 3 %, unlike the 20 % available in the literature. A more accurate definition of Debye temperature for TiN needs to radically refine the values of its αV and B
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化钛TiN的热力学、热学和弹性性能:各种数据的比较和最可靠值的确定
对标准条件下氮化钛TiN的热力学、热学和弹性性能(德拜温度θD、体积热膨胀系数αV和体积模量B)进行了文献数据分析。结果表明,已知数据的值在20%到43%之间有显著的分布。提出了8种最合理的优化计算变体,从而可以揭示某些TiN参数的最可靠值。同时,θD和αV的最小值和最大值采用文献资料,以及等压热容Cp、熔化温度Tm等矛盾最小的数据。p和TiN的密度d。为了改进计算结果,θD(TiN)也采用Magnus - Lindeman和Debye法测定的值。梅耶尔关系是基本的测试表达式。所得的体模量与文献数据进行了比较。这样就可以区分αV和θD的最小值和最可靠值,并对最后的值进行精化校正。结果发现,在标准条件下,θD(TiN)接近最优值应在746 ~ 769 K之间,其等时热容CV -在36.55 ~ 37.19 J/(mol×K)之间。优化后的取值范围不超过3%,而不像文献中提供的20%。更准确地定义TiN的德拜温度需要从根本上改进其αV和B的值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genesis of Plasticity-Induced Serrated Metal Flow in Medium-Mn Steel Tuning Mechanical Properties of High Entropy Alloys by Electro-Pulsing Method Compression Fatigue Properties and Damage Mechanisms of a Bioinspired Nacre-Like Ceramic-Polymer Composite Grain Size Altering Yielding Mechanisms in Ultrafine Grained High-Mn Austenitic Steel: Advanced TEM Investigations Microstructure and Deformation Behaviour of Austenitic Low-Density Steels: The Defining Role of B2 Intermetallic Phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1