M. Hua, Jin Wei, Qilong Bao, Jiabei He, Zhaofu Zhang, Zheyang Zheng, Jiacheng Lei, K. J. Chen
{"title":"Reverse-bias stability and reliability of hole-barrier-free E-mode LPCVD-SiNx/GaN MIS-FETs","authors":"M. Hua, Jin Wei, Qilong Bao, Jiabei He, Zhaofu Zhang, Zheyang Zheng, Jiacheng Lei, K. J. Chen","doi":"10.1109/IEDM.2017.8268489","DOIUrl":null,"url":null,"abstract":"With substantially limited holes generation, the E-mode n-channel LPCVD-SiNx/GaN MIS-FET delivers small NBTI (with V<inf>ds</inf> = 0 V and a negative V<inf>gs</inf> = −30 V) even without a hole-barrier. In high reverse-bias (i.e. high drain bias off-state with V<inf>gs</inf> < V<inf>th</inf> and large V<inf>ds</inf>) stress, larger negative gate-bias is found to accelerate positive shift in V<inf>th</inf>, suggesting a hole-induced gate dielectric degradation mechanism. It is also revealed that the hole-induced dielectric breakdown can be greatly contained when V<inf>gs</inf> is limited to a few volts below V<inf>th</inf>.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
With substantially limited holes generation, the E-mode n-channel LPCVD-SiNx/GaN MIS-FET delivers small NBTI (with Vds = 0 V and a negative Vgs = −30 V) even without a hole-barrier. In high reverse-bias (i.e. high drain bias off-state with Vgs < Vth and large Vds) stress, larger negative gate-bias is found to accelerate positive shift in Vth, suggesting a hole-induced gate dielectric degradation mechanism. It is also revealed that the hole-induced dielectric breakdown can be greatly contained when Vgs is limited to a few volts below Vth.