Package-level Si-based micro-jet impingement cooling solution with multiple drainage micro-trenches

Yong Han, B. L. Lau, Hengyun Zhang, Xiaowu Zhang
{"title":"Package-level Si-based micro-jet impingement cooling solution with multiple drainage micro-trenches","authors":"Yong Han, B. L. Lau, Hengyun Zhang, Xiaowu Zhang","doi":"10.1109/EPTC.2014.7028284","DOIUrl":null,"url":null,"abstract":"High heat flux removal is a major consideration in the design of a number of microelectronic devices. A Si micro cooler, combining the merits of both micro-channels and jet impingement, has been developed to dissipate the heat flux for the IC chip. Multiple drainage micro-trenches (MDMT) have been designed inside the cooler to avoid the negative cross-flow effect between the nearby nozzles. The effect of the micro-trench width on the required pressure drop is analyzed. Three types of nozzle/trench arrangements are studied. Several simulations are conducted to study the thermal effect of the distance between nozzle and trench, when the same pumping power is supplied. Without cross-flow effect, full developed jet impingement can be achieved for each nozzle. With 0.2W pumping power, the spatially average heat transfer coefficient is around 15×104W/m2K. To dissipate 350W/cm2 heat flux uniformly loaded on the Si chip, the designed micro cooler can maintain the maximum chip temperature rise lower than 25°C, and low temperature variation within the chip. The designed cooler with MDMT is also quite effective for cooling the chip with concentrated heat fluxes.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

High heat flux removal is a major consideration in the design of a number of microelectronic devices. A Si micro cooler, combining the merits of both micro-channels and jet impingement, has been developed to dissipate the heat flux for the IC chip. Multiple drainage micro-trenches (MDMT) have been designed inside the cooler to avoid the negative cross-flow effect between the nearby nozzles. The effect of the micro-trench width on the required pressure drop is analyzed. Three types of nozzle/trench arrangements are studied. Several simulations are conducted to study the thermal effect of the distance between nozzle and trench, when the same pumping power is supplied. Without cross-flow effect, full developed jet impingement can be achieved for each nozzle. With 0.2W pumping power, the spatially average heat transfer coefficient is around 15×104W/m2K. To dissipate 350W/cm2 heat flux uniformly loaded on the Si chip, the designed micro cooler can maintain the maximum chip temperature rise lower than 25°C, and low temperature variation within the chip. The designed cooler with MDMT is also quite effective for cooling the chip with concentrated heat fluxes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
封装级硅基多排水微沟微射流冲击冷却解决方案
在许多微电子器件的设计中,高热流通量的去除是一个主要的考虑因素。结合微通道和射流冲击的优点,开发了一种硅微冷却器来散热芯片。冷却器内部设计了多个排水微沟(MDMT),以避免相邻喷嘴之间的负交叉流效应。分析了微沟槽宽度对所需压降的影响。研究了三种喷嘴/沟槽布置方式。在相同泵送功率的情况下,对喷嘴与沟槽距离的热效应进行了仿真研究。在没有交叉流效应的情况下,每个喷嘴都可以实现充分发展的射流冲击。当泵送功率为0.2W时,空间平均换热系数约为15×104W/m2K。为使350W/cm2的热流均匀散去加载在硅片上,所设计的微冷却器能保持芯片最大温升低于25℃,且芯片内部温度变化小。设计的带有MDMT的冷却器对集中热流的芯片也有很好的冷却效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the height of Carbon Nanotubes on hot switching of Au/Cr-Au/MWCNT contact pairs Laminating thin glass onto glass carrier to eliminate grinding and bonding process for glass interposer A robust chip capacitor for video band width in RF power amplifiers Chip scale package with low cost substrate evaluation and characterization Methodology for more accurate assessment of heat loss in microchannel flow boiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1