Tianruo Guo, N. Lovell, D. Tsai, Perry Twyford, S. Fried, J. Morley, G. Suaning, S. Dokos
{"title":"Optimizing retinal ganglion cell responses to high-frequency electrical stimulation strategies for preferential neuronal excitation","authors":"Tianruo Guo, N. Lovell, D. Tsai, Perry Twyford, S. Fried, J. Morley, G. Suaning, S. Dokos","doi":"10.1109/NER.2015.7146607","DOIUrl":null,"url":null,"abstract":"A retinal ganglion cell (RGC) model based on accurate biophysics and detailed representations of cell morphologies was used to understand how these cells respond to electrical stimulation over a wide range of frequencies, spanning 50-2000 pulses per second (PPS). Our modeling results and associated in vitro data both suggest the usefulness of high stimulation frequency in effectively modulating the activity of RGCs. This model can be used for optimizing varied extracellular stimulus profiles, and to assist in the design of sophisticated stimulation strategies for clinical visual neuroprostheses.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A retinal ganglion cell (RGC) model based on accurate biophysics and detailed representations of cell morphologies was used to understand how these cells respond to electrical stimulation over a wide range of frequencies, spanning 50-2000 pulses per second (PPS). Our modeling results and associated in vitro data both suggest the usefulness of high stimulation frequency in effectively modulating the activity of RGCs. This model can be used for optimizing varied extracellular stimulus profiles, and to assist in the design of sophisticated stimulation strategies for clinical visual neuroprostheses.