OCR of Kannada Characters Using Deep Learning

Abhishek Kashyap, Aruna Kumara B
{"title":"OCR of Kannada Characters Using Deep Learning","authors":"Abhishek Kashyap, Aruna Kumara B","doi":"10.1109/TEECCON54414.2022.9854842","DOIUrl":null,"url":null,"abstract":"Kannada, A dravidian language of south India that consists of kannada numerals from 0 to 9 and 49 letters that are further classified into swara, vyanjana and yogavahagalu. The task Optical Character Recognition(OCR) is to transform printed or handwritten text into digital form. This technique can be explored to extract kannada numerals and letters from images of handwritten documents, processed using image processing techniques such as segmentation, skewing and slanting using OpenCV. Deep learning is a subset of machine learning where artificial neural networks, algorithms inspired by the human brain, learn from large amounts of data. Convolutional neural network(CNN) is a deep learning technique that can be used to train the model and classify kannada characters using Tensorflow and Keras. Our study has showed that our model has outperformed present methods to classify Kannada numerals and characters with 100% accuracy.","PeriodicalId":251455,"journal":{"name":"2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEECCON54414.2022.9854842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Kannada, A dravidian language of south India that consists of kannada numerals from 0 to 9 and 49 letters that are further classified into swara, vyanjana and yogavahagalu. The task Optical Character Recognition(OCR) is to transform printed or handwritten text into digital form. This technique can be explored to extract kannada numerals and letters from images of handwritten documents, processed using image processing techniques such as segmentation, skewing and slanting using OpenCV. Deep learning is a subset of machine learning where artificial neural networks, algorithms inspired by the human brain, learn from large amounts of data. Convolutional neural network(CNN) is a deep learning technique that can be used to train the model and classify kannada characters using Tensorflow and Keras. Our study has showed that our model has outperformed present methods to classify Kannada numerals and characters with 100% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的卡纳达语字符OCR
坎那达语,印度南部的一种达罗毗荼语,由坎那达语数字从0到9和49个字母组成,进一步分为swara, vyanjana和yogavahagalu。光学字符识别(OCR)的任务是将印刷或手写文本转换为数字形式。该技术可以探索从手写文档的图像中提取卡纳达语数字和字母,使用OpenCV进行分割、倾斜和倾斜等图像处理技术进行处理。深度学习是机器学习的一个子集,其中人工神经网络,受人类大脑启发的算法,从大量数据中学习。卷积神经网络(CNN)是一种深度学习技术,可用于训练模型并使用Tensorflow和Keras对卡纳达语字符进行分类。我们的研究表明,我们的模型在分类卡纳达语数字和字符方面优于目前的方法,准确率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Machine Learning Predictions: A Case Study Stable Gain With Frequency Selective Surface in Planar and Conformal Structure: For Radome Application Control of Modified Switched Reluctance Motor for EV Applications A Multi Objective Artificial Eco-System Based Optimization Technique Integrating Solar Photovoltaic System In Distribution Network Novel Adders for Xilinx Versal FPGAs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1