{"title":"ITrackU","authors":"Yifeng Cao, Ashutosh Dhekne, M. Ammar","doi":"10.1145/3458864.3467885","DOIUrl":null,"url":null,"abstract":"High-precision tracking of a pen-like instrument's movements is desirable in a wide range of fields spanning education, robotics, and art, to name a few. The key challenge in doing so stems from the impracticality of embedding electronics in the tip of such instruments (a pen, marker, scalpel, etc.) as well as the difficulties in instrumenting the surface that it works on. In this paper, we present ITrackU, a movement digitization system that does not require modifications to the surface or the tracked instrument's tip. ITrackU fuses locations obtained using ultra-wideband radios (UWB), with an inertial and magnetic unit (IMU) and a pressure sensor, yielding multidimensional improvements in accuracy, range, cost, and robustness, over existing works. ITrackU embeds a micro-transmitter at the base of a pen which creates a trackable beacon, that is localized from the corners of a writing surface. Fused with inertial motion sensor and a pressure sensor, ITrackU enables accurate tracking. Our prototype of ITrackU covers a large 2.5m × 2m area, while obtaining around 2.9mm median error. We demonstrate the accuracy of our system by drawing numerous shapes and characters on a whiteboard, and compare them against a touchscreen and a camera-based ground-truthing system. Finally, the produced stream of digitized data is minuscule in volume, when compared with a video of the whiteboard, which saves both network bandwidth and storage space.","PeriodicalId":153361,"journal":{"name":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458864.3467885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

High-precision tracking of a pen-like instrument's movements is desirable in a wide range of fields spanning education, robotics, and art, to name a few. The key challenge in doing so stems from the impracticality of embedding electronics in the tip of such instruments (a pen, marker, scalpel, etc.) as well as the difficulties in instrumenting the surface that it works on. In this paper, we present ITrackU, a movement digitization system that does not require modifications to the surface or the tracked instrument's tip. ITrackU fuses locations obtained using ultra-wideband radios (UWB), with an inertial and magnetic unit (IMU) and a pressure sensor, yielding multidimensional improvements in accuracy, range, cost, and robustness, over existing works. ITrackU embeds a micro-transmitter at the base of a pen which creates a trackable beacon, that is localized from the corners of a writing surface. Fused with inertial motion sensor and a pressure sensor, ITrackU enables accurate tracking. Our prototype of ITrackU covers a large 2.5m × 2m area, while obtaining around 2.9mm median error. We demonstrate the accuracy of our system by drawing numerous shapes and characters on a whiteboard, and compare them against a touchscreen and a camera-based ground-truthing system. Finally, the produced stream of digitized data is minuscule in volume, when compared with a video of the whiteboard, which saves both network bandwidth and storage space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ITrackU
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open source RAN slicing on POWDER: a top-to-bottom O-RAN use case Measuring forest carbon with mobile phones ThingSpire OS: a WebAssembly-based IoT operating system for cloud-edge integration SOS: isolated health monitoring system to save our satellites Acoustic ruler using wireless earbud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1