Q-MRAC Based Online Rotor Resistance Estimation Technique Considering the Saturated Magnetizing Inductance of an Indirect Rotor Flux Oriented Vector Controlled Induction Motor Drive for an Electric Vehicle

Venkatanarasimharao Medam, P. Anil Kumar, S. Sahoo, Roger Looney
{"title":"Q-MRAC Based Online Rotor Resistance Estimation Technique Considering the Saturated Magnetizing Inductance of an Indirect Rotor Flux Oriented Vector Controlled Induction Motor Drive for an Electric Vehicle","authors":"Venkatanarasimharao Medam, P. Anil Kumar, S. Sahoo, Roger Looney","doi":"10.1109/SeFet48154.2021.9375769","DOIUrl":null,"url":null,"abstract":"This paper proposes a Reactive power-based Model Reference Adaptive Controller (Q-MRAC) for the real-time estimation of rotor resistance considering the magnetizing inductance saturation, for an IFOC based induction motor drive used in electric vehicle (EV). The online estimated rotor resistance is updated in the IFOC operation by carefully observing the dynamics of the EV. In general, EVs operate in the flux saturation region to achieve higher gradients as well as the compactness of the overall drive system. The saturated flux operation of an induction motor has a variable magnetizing inductance profile depending on the level of saturation. The proposed Q-MRAC considers the complete magnetizing inductance variation profile to estimate an accurate value of rotor resistance, and updates into the IFOC algorithm without affecting the vehicle dynamics. The proposed controller makes the EV drive system more efficient. This estimation works accurately at all magnetization levels and stator frequencies. The simulation results validate the effectiveness of the proposed estimation technique.","PeriodicalId":232560,"journal":{"name":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFet48154.2021.9375769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a Reactive power-based Model Reference Adaptive Controller (Q-MRAC) for the real-time estimation of rotor resistance considering the magnetizing inductance saturation, for an IFOC based induction motor drive used in electric vehicle (EV). The online estimated rotor resistance is updated in the IFOC operation by carefully observing the dynamics of the EV. In general, EVs operate in the flux saturation region to achieve higher gradients as well as the compactness of the overall drive system. The saturated flux operation of an induction motor has a variable magnetizing inductance profile depending on the level of saturation. The proposed Q-MRAC considers the complete magnetizing inductance variation profile to estimate an accurate value of rotor resistance, and updates into the IFOC algorithm without affecting the vehicle dynamics. The proposed controller makes the EV drive system more efficient. This estimation works accurately at all magnetization levels and stator frequencies. The simulation results validate the effectiveness of the proposed estimation technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Q-MRAC的电动汽车间接转子磁链定向矢量控制感应电机饱和磁化电感转子电阻在线估计技术
针对电动汽车中基于IFOC的感应电机驱动,提出了一种基于无功功率的模型参考自适应控制器(Q-MRAC),用于考虑磁化电感饱和的转子电阻实时估计。在IFOC运行中,通过仔细观察EV的动力学,更新在线估计的转子电阻。一般情况下,电动汽车运行在磁通饱和区域,以获得更高的梯度和整体驱动系统的紧凑性。感应电动机的饱和磁通操作具有取决于饱和水平的可变磁化电感曲线。提出的Q-MRAC考虑完整的磁化电感变化曲线来估计转子电阻的准确值,并在不影响车辆动力学的情况下更新到IFOC算法中。该控制器提高了电动汽车驱动系统的效率。这种估计在所有磁化水平和定子频率下都能准确地工作。仿真结果验证了该估计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrofication Of ICE Driven Auto-Rickshaw Seamless Transition between Grid-Connected and Islanded Operation Modes for Hybrid PV-BESS Combination used in Single-Phase, Critical Load Applications A Critical Study on Campus Energy Monitoring System and Role of IoT A Novel Switched-Capacitor Based Three-phase MultiLevel Inverter Fed induction motor for Agricultural Applications A New Single-Phase Five-Level Neutral Point Clamped Cascaded Multilevel Inverter for Minimization of Leakage Current in PV Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1