{"title":"Linear and Extended Kalman Filter Estimation of Pitch and Yaw Angles for 2 DOF Double Dual Twin Rotor Aero-dynamical System","authors":"Fazal Nasir, Mohammad Javad Fotuhi, Z. Bingul","doi":"10.1109/CEIT.2018.8751774","DOIUrl":null,"url":null,"abstract":"This paper presents the attitude control for the over-actuated double coaxial dual rotor 2DOF helicopter aerodynamic system (2DOF-HADS), a simplified version of helicopter, to investigate for possible fast dynamic responses using (proportional-Interagor-derivative) PID control algorithm and Extended Kalman Filter (EKF). In designing control strategy for Helicopter, dynamics uncertainties and nonlinear behavior have investigated. In control tasks, two separate PID controllers used for stabilization of coupled pitch and yaw angles and tracking of chosen state variables. The linear and Extended Kalman Filter used to estimate the uncertain states of the system. The filter combination with PID controllers improve the reliability of sensors data. The simulation and experimental results show a good tracking of the desire trajectory.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents the attitude control for the over-actuated double coaxial dual rotor 2DOF helicopter aerodynamic system (2DOF-HADS), a simplified version of helicopter, to investigate for possible fast dynamic responses using (proportional-Interagor-derivative) PID control algorithm and Extended Kalman Filter (EKF). In designing control strategy for Helicopter, dynamics uncertainties and nonlinear behavior have investigated. In control tasks, two separate PID controllers used for stabilization of coupled pitch and yaw angles and tracking of chosen state variables. The linear and Extended Kalman Filter used to estimate the uncertain states of the system. The filter combination with PID controllers improve the reliability of sensors data. The simulation and experimental results show a good tracking of the desire trajectory.