Young-Rae Cho, Seungjun Shin, Sung-Hyuk Yim, Hyun-Woong Cho, Woo‐Jin Song
{"title":"Multistage fusion and dissimilarity regularization for deep learning","authors":"Young-Rae Cho, Seungjun Shin, Sung-Hyuk Yim, Hyun-Woong Cho, Woo‐Jin Song","doi":"10.1109/MFI.2017.8170385","DOIUrl":null,"url":null,"abstract":"We propose a multistage fusion stream (MFS) and dissimilarity regularization (DisReg) for deep learning. The degree of similarity between the feature maps of a single-sensor stream is estimated using DisReg. DisReg is applied to the learning problems of each single-sensor stream, so they have distinct types of feature map. Each stage of the MFS fuses the feature maps extracted from single-sensor streams. The proposed scheme fuses information from heterogeneous sensors by learning new patterns that cannot be observed using only the feature map of a single-sensor stream. The proposed method is evaluated by testing its ability to automatically recognize targets in a synthetic aperture radar and infrared images. The superiority of the proposed fusion scheme is demonstrated by comparison with conventional algorithm.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We propose a multistage fusion stream (MFS) and dissimilarity regularization (DisReg) for deep learning. The degree of similarity between the feature maps of a single-sensor stream is estimated using DisReg. DisReg is applied to the learning problems of each single-sensor stream, so they have distinct types of feature map. Each stage of the MFS fuses the feature maps extracted from single-sensor streams. The proposed scheme fuses information from heterogeneous sensors by learning new patterns that cannot be observed using only the feature map of a single-sensor stream. The proposed method is evaluated by testing its ability to automatically recognize targets in a synthetic aperture radar and infrared images. The superiority of the proposed fusion scheme is demonstrated by comparison with conventional algorithm.