Cross-Domain Transfer via Semantic Skill Imitation

Karl Pertsch, Ruta Desai, Vikash Kumar, Franziska Meier, Joseph J. Lim, Dhruv Batra, Akshara Rai
{"title":"Cross-Domain Transfer via Semantic Skill Imitation","authors":"Karl Pertsch, Ruta Desai, Vikash Kumar, Franziska Meier, Joseph J. Lim, Dhruv Batra, Akshara Rai","doi":"10.48550/arXiv.2212.07407","DOIUrl":null,"url":null,"abstract":"We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like\"opening the microwave\"or\"turning on the stove\". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.07407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like"opening the microwave"or"turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义技能模仿的跨领域迁移
我们提出了一种语义模仿方法,该方法使用源域(例如人类视频)的演示来加速不同目标域(例如模拟厨房中的机器人机械手)中的强化学习(RL)。我们的方法不是模仿关节速度等低级动作,而是模仿“打开微波炉”或“打开炉子”等已演示的语义技能的顺序。这使我们能够跨环境(例如,真实世界到模拟厨房)和代理实施例(例如,手动人类演示到机械手臂)转移演示。我们评估了三个具有挑战性的跨领域学习问题,并匹配了需要领域内演示的演示加速RL方法的性能。在模拟的厨房环境中,我们的方法使用不到3分钟的真实厨房人类视频演示来学习长期机器人操作任务。这可以通过重复使用演示来扩展机器人的学习,例如收集为人类视频,以便在任意数量的目标领域进行学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MResT: Multi-Resolution Sensing for Real-Time Control with Vision-Language Models Lidar Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion Safe Robot Learning in Assistive Devices through Neural Network Repair COACH: Cooperative Robot Teaching Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1