{"title":"Collaborative Data Science using Scalable Homoiconicity","authors":"H. Pirk","doi":"10.1145/3582302.3582316","DOIUrl":null,"url":null,"abstract":"Motivation: Data science is increasingly collaborative. On the one hand, results need to be distributed, e.g., as interactive visualizations. On the other, collaboration in the data development process improves quality and timeliness. This can take many forms: partitioning a problem and working on aspects in parallel, exploring different solutions or reviewing someone else's work.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582302.3582316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Data science is increasingly collaborative. On the one hand, results need to be distributed, e.g., as interactive visualizations. On the other, collaboration in the data development process improves quality and timeliness. This can take many forms: partitioning a problem and working on aspects in parallel, exploring different solutions or reviewing someone else's work.