Generic Connectivity-Based CGRA Mapping via Integer Linear Programming

Matthew James Peter Walker, J. Anderson
{"title":"Generic Connectivity-Based CGRA Mapping via Integer Linear Programming","authors":"Matthew James Peter Walker, J. Anderson","doi":"10.1109/FCCM.2019.00019","DOIUrl":null,"url":null,"abstract":"Coarse-grained reconfigurable architectures (CGRAs) are programmable logic devices with large coarsegrained ALU-like logic blocks, and multi-bit datapath-style routing. CGRAs often have relatively restricted data routing networks, so they attract CAD mapping tools that use exact methods, such as Integer Linear Programming (ILP). However, tools that target general architectures must use large constraint systems to fully describe an architecture's flexibility, resulting in lengthy run-times. In this paper, we propose to derive connectivity information from an otherwise generic device model, and use this to create simpler ILPs, which we combine in an iterative schedule and retain most of the exactness of a fully-generic ILP approach. This new approach has a speed-up geometric mean of 5.88x when considering benchmarks that do not hita time-limit of 7.5 hours on the fully-generic ILP, and 37.6x otherwise. This was measured using the set of benchmarks used to originally evaluate the fully-generic approach and several more benchmarks representing computation tasks, over three different CGRA architectures. All run-times of the new approach are less than 20 minutes, with 90th percentile time of 410 seconds. The proposed mapping techniques are integrated into, and evaluated using the open-source CGRA-ME architecture modelling and exploration framework.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Coarse-grained reconfigurable architectures (CGRAs) are programmable logic devices with large coarsegrained ALU-like logic blocks, and multi-bit datapath-style routing. CGRAs often have relatively restricted data routing networks, so they attract CAD mapping tools that use exact methods, such as Integer Linear Programming (ILP). However, tools that target general architectures must use large constraint systems to fully describe an architecture's flexibility, resulting in lengthy run-times. In this paper, we propose to derive connectivity information from an otherwise generic device model, and use this to create simpler ILPs, which we combine in an iterative schedule and retain most of the exactness of a fully-generic ILP approach. This new approach has a speed-up geometric mean of 5.88x when considering benchmarks that do not hita time-limit of 7.5 hours on the fully-generic ILP, and 37.6x otherwise. This was measured using the set of benchmarks used to originally evaluate the fully-generic approach and several more benchmarks representing computation tasks, over three different CGRA architectures. All run-times of the new approach are less than 20 minutes, with 90th percentile time of 410 seconds. The proposed mapping techniques are integrated into, and evaluated using the open-source CGRA-ME architecture modelling and exploration framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于整数线性规划的通用连通CGRA映射
粗粒度可重构体系结构(CGRAs)是可编程逻辑器件,具有大型粗粒度类似alu的逻辑块和多位数据路径风格的路由。CGRAs通常具有相对受限的数据路由网络,因此它们吸引了使用精确方法的CAD映射工具,例如整数线性规划(ILP)。然而,针对一般体系结构的工具必须使用大型约束系统来完全描述体系结构的灵活性,从而导致冗长的运行时间。在本文中,我们建议从一个通用的设备模型中获得连接信息,并使用它来创建更简单的ILP,我们将其组合在一个迭代的时间表中,并保留了全通用ILP方法的大部分准确性。当考虑到在全通用ILP上没有7.5小时时间限制的基准测试时,这种新方法的几何平均加速速度为5.88倍,否则为37.6倍。这是通过在三种不同的CGRA体系结构上使用最初用于评估全通用方法的基准集和代表计算任务的其他几个基准来测量的。新方法的所有运行时间都小于20分钟,第90百分位时间为410秒。将提出的映射技术集成到开源的CGRA-ME架构建模和探索框架中,并使用该框架对其进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race Between FPGA and GPU MEG: A RISCV-Based System Simulation Infrastructure for Exploring Memory Optimization Using FPGAs and Hybrid Memory Cube π-BA: Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation Optimization Safe Task Interruption for FPGAs Analyzing the Energy-Efficiency of Vision Kernels on Embedded CPU, GPU and FPGA Platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1