Detection of Heart Sound Murmurs and Clinical Outcome with Bidirectional Long Short-Term Memory Networks

S. Monteiro, A. Fred, H. Silva
{"title":"Detection of Heart Sound Murmurs and Clinical Outcome with Bidirectional Long Short-Term Memory Networks","authors":"S. Monteiro, A. Fred, H. Silva","doi":"10.22489/CinC.2022.153","DOIUrl":null,"url":null,"abstract":"Heart sound recordings are a key non-invasive tool to detect both congenital and acquired heart conditions. As part of the George B. Moody PhysioNet Challenge 2022, we present an approach based on Bidirectional Long Short-Term Memory (BiLSTM) neural networks for the detection of murmurs and prediction of clinical outcome from Phonocardiograms (PCGs). We used the homomorphic, Hilbert, power spectral density, and wavelet envelopes as signal features, from which we extracted fixed-length segments of 4 seconds to train the network. Using the official challenge scoring metrics, our team SmartBeatIT achieved a murmur weighted accuracy score of 0.757 on the hidden test set (ranked 6th out of 40 teams), and an outcome cost score of 13815 (ranked 25th out of 39 teams). With 5-fold cross-validation on the training set, in the murmur detection task we obtained sensitivities of 0.827 and 0.312 for the Present and Unknown classes and a specificity of 0.801; and a sensitivity of 0.676 and a specificity of 0.544 in the outcome prediction task.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Heart sound recordings are a key non-invasive tool to detect both congenital and acquired heart conditions. As part of the George B. Moody PhysioNet Challenge 2022, we present an approach based on Bidirectional Long Short-Term Memory (BiLSTM) neural networks for the detection of murmurs and prediction of clinical outcome from Phonocardiograms (PCGs). We used the homomorphic, Hilbert, power spectral density, and wavelet envelopes as signal features, from which we extracted fixed-length segments of 4 seconds to train the network. Using the official challenge scoring metrics, our team SmartBeatIT achieved a murmur weighted accuracy score of 0.757 on the hidden test set (ranked 6th out of 40 teams), and an outcome cost score of 13815 (ranked 25th out of 39 teams). With 5-fold cross-validation on the training set, in the murmur detection task we obtained sensitivities of 0.827 and 0.312 for the Present and Unknown classes and a specificity of 0.801; and a sensitivity of 0.676 and a specificity of 0.544 in the outcome prediction task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双向长短期记忆网络检测心音杂音及临床预后
心音记录是检测先天性和后天性心脏病的一种关键的非侵入性工具。作为George B. Moody PhysioNet Challenge 2022的一部分,我们提出了一种基于双向长短期记忆(BiLSTM)神经网络的方法,用于检测杂音并预测心音图(pcg)的临床结果。我们使用同态、希尔伯特、功率谱密度和小波包络作为信号特征,从中提取固定长度的4秒片段来训练网络。使用官方挑战得分指标,我们的团队SmartBeatIT在隐藏测试集上获得了0.757的低加权准确率得分(在40支团队中排名第6),以及13815的结果成本得分(在39支团队中排名第25)。通过对训练集进行5倍交叉验证,在杂音检测任务中,我们获得了Present和Unknown类别的灵敏度分别为0.827和0.312,特异性为0.801;结果预测任务的敏感性为0.676,特异性为0.544。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1