Active Vibration Control of a Helicopter Rotor Blade by Using a Linear Quadratic Regulator

M. Uddin, Pratik Sarker, C. Theodore, U. Chakravarty
{"title":"Active Vibration Control of a Helicopter Rotor Blade by Using a Linear Quadratic Regulator","authors":"M. Uddin, Pratik Sarker, C. Theodore, U. Chakravarty","doi":"10.1115/IMECE2018-86319","DOIUrl":null,"url":null,"abstract":"Active vibration control is a widely implemented method for helicopter vibration control. Due to the significant progress in the microelectronics, this technique outperforms the traditional passive control technique due to the weight penalty and lack of adaptability for the changing flight conditions. In this paper, an optimal controller is designed to attenuate the helicopter rotor blade vibration. The mathematical model of the triply coupled vibration of the rotating cantilever beam is used to develop the state-space model of an isolated rotor blade. The required natural frequencies are determined by the modified Galerkin method and only the principal aerodynamic forces acting on the structure are considered. Linear quadratic regulator is designed to achieve the vibration reduction at the optimum level and the controller is tuned for the hovering and forward flight.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Active vibration control is a widely implemented method for helicopter vibration control. Due to the significant progress in the microelectronics, this technique outperforms the traditional passive control technique due to the weight penalty and lack of adaptability for the changing flight conditions. In this paper, an optimal controller is designed to attenuate the helicopter rotor blade vibration. The mathematical model of the triply coupled vibration of the rotating cantilever beam is used to develop the state-space model of an isolated rotor blade. The required natural frequencies are determined by the modified Galerkin method and only the principal aerodynamic forces acting on the structure are considered. Linear quadratic regulator is designed to achieve the vibration reduction at the optimum level and the controller is tuned for the hovering and forward flight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性二次型调节器的直升机旋翼叶片振动主动控制
主动振动控制是一种应用广泛的直升机振动控制方法。由于微电子技术的重大进步,该技术优于传统的被动控制技术,因为重量损失和缺乏对变化的飞行条件的适应性。针对直升机旋翼叶片的振动,设计了一种最优控制器。利用旋转悬臂梁三耦合振动的数学模型,建立了隔振转子叶片的状态空间模型。所需的固有频率由改进的伽辽金方法确定,并且只考虑作用在结构上的主要气动力。设计了线性二次型调节器,使其减振达到最优水平,并对控制器进行了悬停和前飞调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Best Structural Theories for Free Vibrations of Sandwich Composites via Machine Learning Effect of Cryogenic Temperature Rolling on High Speed Impact Behavior of AA 6082 Thin Targets Neural Network Inverse Based Omnidirectional Rotation Decoupling Control to the Electrodynamic Reaction Sphere Structural Dynamic Testing Results for Air-Independent Proton Exchange Membrane (PEM) Fuel Cell Technologies for Space Applications Effect of Shear Overloads on Crack Propagation in Al-7075 Under In-Plane Biaxial Fatigue Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1