GP-based modeling method for time series prediction with parameter optimization and node alternation

I. Yoshihara, T. Aoyama, M. Yasunaga
{"title":"GP-based modeling method for time series prediction with parameter optimization and node alternation","authors":"I. Yoshihara, T. Aoyama, M. Yasunaga","doi":"10.1109/CEC.2000.870828","DOIUrl":null,"url":null,"abstract":"A fast method of GP based model building for time series prediction is proposed. The method involves two newly-devised techniques. One is regarding determination of model parameters: only functional forms are inherited from their parents with genetic programming, but model parameters are not inherited. They are optimized by a backpropagation-like algorithm when a child (model) is newborn. The other is regarding mutation: nodes which require a different number of edges, can be transformed into different types of nodes through mutation. This operation is effective at accelerating complicated functions e.g. seismic ground motion. The method has been applied to a typical benchmark of time series and many real world problems.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A fast method of GP based model building for time series prediction is proposed. The method involves two newly-devised techniques. One is regarding determination of model parameters: only functional forms are inherited from their parents with genetic programming, but model parameters are not inherited. They are optimized by a backpropagation-like algorithm when a child (model) is newborn. The other is regarding mutation: nodes which require a different number of edges, can be transformed into different types of nodes through mutation. This operation is effective at accelerating complicated functions e.g. seismic ground motion. The method has been applied to a typical benchmark of time series and many real world problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gp的参数优化节点交替时间序列预测建模方法
提出了一种基于GP的时间序列预测快速建模方法。这种方法涉及两种新发明的技术。一是关于模型参数的确定:只有功能形式通过遗传规划从其父类遗传,但模型参数不遗传。当孩子(模型)出生时,它们通过类似反向传播的算法进行优化。另一个是关于突变的:需要不同边数的节点,可以通过突变转化为不同类型的节点。这种操作对于加速复杂的函数是有效的,例如地震地面运动。该方法已应用于一个典型的时间序列基准和许多实际问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1