Influence Maximization With Co-Existing Seeds

R. Becker, Gianlorenzo D'angelo, Hugo Gilbert
{"title":"Influence Maximization With Co-Existing Seeds","authors":"R. Becker, Gianlorenzo D'angelo, Hugo Gilbert","doi":"10.1145/3459637.3482439","DOIUrl":null,"url":null,"abstract":"In the classical influence maximization problem we aim to select a set of nodes, called seeds, to start an efficient information diffusion process. More precisely, the goal is to select seeds such that the expected number of nodes reached by the diffusion process is maximized. In this work we study a variant of this problem where an unknown (up to a probability distribution) set of nodes, referred to as co-existing seeds, joins in starting the diffusion process even if not selected. This setting allows to model that, in certain situations, some nodes are willing to act as \"voluntary seeds'' even if not chosen by the campaign organizer. This may for example be due to the positive nature of the information campaign (e.g., public health awareness programs, HIV prevention, financial aid programs), or due to external social driving effects (e.g., nodes are friends of selected seeds in real life or in other social media). In this setting, we study two types of optimization problems. While the first one aims to maximize the expected number of reached nodes, the second one endeavors to maximize the expected increment in the number of reached nodes in comparison to a non-intervention strategy. The problems (particularly the second one) are motivated by cooperative game theory. For various probability distributions on co-existing seeds, we obtain several algorithms with approximation guarantees as well as hardness and hardness of approximation results. We conclude with experiments that demonstrate the usefulness of our approach when co-existing seeds exist.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the classical influence maximization problem we aim to select a set of nodes, called seeds, to start an efficient information diffusion process. More precisely, the goal is to select seeds such that the expected number of nodes reached by the diffusion process is maximized. In this work we study a variant of this problem where an unknown (up to a probability distribution) set of nodes, referred to as co-existing seeds, joins in starting the diffusion process even if not selected. This setting allows to model that, in certain situations, some nodes are willing to act as "voluntary seeds'' even if not chosen by the campaign organizer. This may for example be due to the positive nature of the information campaign (e.g., public health awareness programs, HIV prevention, financial aid programs), or due to external social driving effects (e.g., nodes are friends of selected seeds in real life or in other social media). In this setting, we study two types of optimization problems. While the first one aims to maximize the expected number of reached nodes, the second one endeavors to maximize the expected increment in the number of reached nodes in comparison to a non-intervention strategy. The problems (particularly the second one) are motivated by cooperative game theory. For various probability distributions on co-existing seeds, we obtain several algorithms with approximation guarantees as well as hardness and hardness of approximation results. We conclude with experiments that demonstrate the usefulness of our approach when co-existing seeds exist.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影响最大化与共存的种子
在经典的影响最大化问题中,我们的目标是选择一组节点,称为种子,开始一个有效的信息扩散过程。更准确地说,目标是选择种子,使扩散过程达到的预期节点数最大化。在这项工作中,我们研究了这个问题的一个变体,其中一个未知的(高达概率分布)节点集,称为共存种子,即使没有被选中,也会加入开始扩散过程。这种设置允许建模,在某些情况下,一些节点愿意充当“自愿种子”,即使不是由活动组织者选择的。例如,这可能是由于宣传活动的积极性质(例如,公共卫生宣传方案、艾滋病毒预防、财政援助方案),也可能是由于外部社会驱动效应(例如,节点是现实生活中或其他社交媒体中选定种子的朋友)。在这种情况下,我们研究两类优化问题。第一个策略的目标是最大化到达节点的预期数量,而第二个策略的目标是最大化与非干预策略相比到达节点数量的预期增量。这些问题(尤其是第二个问题)是由合作博弈论驱动的。对于共存种子上的各种概率分布,我们得到了几种具有近似保证的算法以及近似结果的硬度和硬度。最后,我们用实验证明,当共存的种子存在时,我们的方法是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1