ReOrder: Runtime datapath generation for high-throughput multi-stream processing

Andreas Becher, S. Wildermann, Moritz Mühlenthaler, J. Teich
{"title":"ReOrder: Runtime datapath generation for high-throughput multi-stream processing","authors":"Andreas Becher, S. Wildermann, Moritz Mühlenthaler, J. Teich","doi":"10.1109/ReConFig.2016.7857185","DOIUrl":null,"url":null,"abstract":"Modern Programmable FPGA-based SoCs that tightly couple CPU and programmable logic enable the acceleration of stream processing in hardware on-demand by making use of the available high input and output throughputs and the reconfigurability both in software and hardware. In this paper, we present the concept and implementation of a hardware unit called ReOrder that serves as a converter for multiple parallel streams of data read from and written to an accelerator. Our technique and programmable design allows flexible data access and connects different stream processing accelerators independent of the host data layout. In order to achieve a high accelerator throughput, it is necessary to determine an optimized datapath according to the accelerator's internal schedule of input and output data. We are concerned with an online setting, in which either the data layout (e.g., in the case of modern database systems) or the accelerator operational mode change dynamically. Therefore, an algorithm is required which can be used at “runtime” in order to maintain an optimized datapath configuration. We propose an efficient heuristic algorithm and corresponding FPGA design that is able to translate arbitrary (multi-source) data layouts of the connected host system to generate any specified data stream of the accelerator at runtime within ms.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Modern Programmable FPGA-based SoCs that tightly couple CPU and programmable logic enable the acceleration of stream processing in hardware on-demand by making use of the available high input and output throughputs and the reconfigurability both in software and hardware. In this paper, we present the concept and implementation of a hardware unit called ReOrder that serves as a converter for multiple parallel streams of data read from and written to an accelerator. Our technique and programmable design allows flexible data access and connects different stream processing accelerators independent of the host data layout. In order to achieve a high accelerator throughput, it is necessary to determine an optimized datapath according to the accelerator's internal schedule of input and output data. We are concerned with an online setting, in which either the data layout (e.g., in the case of modern database systems) or the accelerator operational mode change dynamically. Therefore, an algorithm is required which can be used at “runtime” in order to maintain an optimized datapath configuration. We propose an efficient heuristic algorithm and corresponding FPGA design that is able to translate arbitrary (multi-source) data layouts of the connected host system to generate any specified data stream of the accelerator at runtime within ms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ReOrder:用于高吞吐量多流处理的运行时数据路径生成
现代基于可编程fpga的soc紧密耦合CPU和可编程逻辑,通过利用可用的高输入和输出吞吐量以及软件和硬件中的可重构性,可以按需加速硬件中的流处理。在本文中,我们提出了一个叫做ReOrder的硬件单元的概念和实现,它可以作为多个并行数据流从加速器读取和写入的转换器。我们的技术和可编程设计允许灵活的数据访问和连接不同的流处理加速器独立于主机数据布局。为了实现加速器的高吞吐量,需要根据加速器内部输入和输出数据的调度来确定优化的数据路径。我们关注的是在线设置,其中数据布局(例如,在现代数据库系统的情况下)或加速器操作模式都是动态变化的。因此,需要一种可以在“运行时”使用的算法,以维护优化的数据路径配置。我们提出了一种有效的启发式算法和相应的FPGA设计,能够转换连接的主机系统的任意(多源)数据布局,以在毫秒内生成加速器的任何指定数据流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal processor interface for CGRA-based accelerators implemented on FPGAs Automatic framework to generate reconfigurable accelerators for option pricing applications Hobbit — Smaller but faster than a dwarf: Revisiting lightweight SHA-3 FPGA implementations FPGA implementation of optimized XBM specifications by transformation for AFSMs Data-rate-aware FPGA-based acceleration framework for streaming applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1