A face recognition algorithm based on LLE-SIFT feature descriptors

Ye Jihua, Shi Shuxia, Chen Yahui
{"title":"A face recognition algorithm based on LLE-SIFT feature descriptors","authors":"Ye Jihua, Shi Shuxia, Chen Yahui","doi":"10.1109/ICCSE.2015.7250341","DOIUrl":null,"url":null,"abstract":"Scale Invariant Feature Transform(SIFT) could influence the real time due to a higher dimension calculation and a longer computation time in large-scale data storage and computing. This paper presents a concept about LLE-SIFT feature descriptors with LLE algorithm. The first step is to calculate feature points of all train images by the standard SIFT algorithm, and searching the neighbor area of these points in the original image, then calculating the gradient of the horizontal direction and the vertical direction to form a vector matrix, whose dimension is reduced by LLE algorithm to obtain a projection matrix. The second step is to obtain the neighbor area using the critical information of points in the scale image, and calculating the horizontal direction and the vertical direction of the neighbors area to form a vector matrix, then the LLE-SIFT feature descriptor is the multiplied of the vector matrix and the projection matrix. Experiments shows that LLE-SIFT is effective.","PeriodicalId":311451,"journal":{"name":"2015 10th International Conference on Computer Science & Education (ICCSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2015.7250341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Scale Invariant Feature Transform(SIFT) could influence the real time due to a higher dimension calculation and a longer computation time in large-scale data storage and computing. This paper presents a concept about LLE-SIFT feature descriptors with LLE algorithm. The first step is to calculate feature points of all train images by the standard SIFT algorithm, and searching the neighbor area of these points in the original image, then calculating the gradient of the horizontal direction and the vertical direction to form a vector matrix, whose dimension is reduced by LLE algorithm to obtain a projection matrix. The second step is to obtain the neighbor area using the critical information of points in the scale image, and calculating the horizontal direction and the vertical direction of the neighbors area to form a vector matrix, then the LLE-SIFT feature descriptor is the multiplied of the vector matrix and the projection matrix. Experiments shows that LLE-SIFT is effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LLE-SIFT特征描述符的人脸识别算法
尺度不变特征变换(Scale Invariant Feature Transform, SIFT)在大规模数据存储和计算中,由于计算维度较高,计算时间较长,影响了实时性。本文提出了基于LLE算法的LLE- sift特征描述子的概念。首先,通过标准SIFT算法计算所有列车图像的特征点,并在原始图像中搜索这些点的邻近区域,然后计算水平方向和垂直方向的梯度形成向量矩阵,通过LLE算法降维得到投影矩阵。第二步是利用尺度图像中点的关键信息获取相邻区域,并计算相邻区域的水平方向和垂直方向形成向量矩阵,然后LLE-SIFT特征描述子是向量矩阵和投影矩阵的乘积。实验表明,LLE-SIFT算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards interpreting models to orchestrate IaaS multi-cloud infrastructures Learning through participation: Partnership in undergraduate curriculum design and assessment in Chinese higher education Discussion on heuristic teaching method for arithmetic unit design Application of spss software on mental health education for community residents The streaming media technology applying in the E-training of vocational education teacher
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1