Eduardo T. Tristão, Kristtopher K. Coelho, E. Silva, A. Vieira, Michele Nogueira, J. Nacif
{"title":"Autenticação Biométrica Baseada em PPG e ECG utilizando Aprendizado Profundo","authors":"Eduardo T. Tristão, Kristtopher K. Coelho, E. Silva, A. Vieira, Michele Nogueira, J. Nacif","doi":"10.5753/sbesc_estendido.2022.227273","DOIUrl":null,"url":null,"abstract":"A popularização da Internet das Coisas aumentou significativamente os requisitos para a transmissão e armazenamento de dados pessoais sensíveis. Consequentemente, esses avanços exigem políticas rígidas de controle de acesso com a necessidade de garantir segurança e privacidade de forma eficaz. É possível encontrar na literatura que a autenticação biométrica baseada em sinais de PPG (fotopletismografia) ou ECG (eletrocardiograma) são potenciais suportes no atendimento a esses requisitos. Pensando nisso, este artigo propõe um método de identificação multimodal de indivíduos, combinando ambos os sinais. Nossa proposta combina duas redes neurais convolucionais em cascata, dando avanços ao estado da arte. Como resultados numéricos, o método atinge 99,62% de acurácia, 93,83% de precisão e 0,04% FAR em diferentes bases de dados.","PeriodicalId":305719,"journal":{"name":"Anais Estendidos do XII Simpósio Brasileiro de Engenharia de Sistemas Computacionais (SBESC Estendido 2022)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XII Simpósio Brasileiro de Engenharia de Sistemas Computacionais (SBESC Estendido 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbesc_estendido.2022.227273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A popularização da Internet das Coisas aumentou significativamente os requisitos para a transmissão e armazenamento de dados pessoais sensíveis. Consequentemente, esses avanços exigem políticas rígidas de controle de acesso com a necessidade de garantir segurança e privacidade de forma eficaz. É possível encontrar na literatura que a autenticação biométrica baseada em sinais de PPG (fotopletismografia) ou ECG (eletrocardiograma) são potenciais suportes no atendimento a esses requisitos. Pensando nisso, este artigo propõe um método de identificação multimodal de indivíduos, combinando ambos os sinais. Nossa proposta combina duas redes neurais convolucionais em cascata, dando avanços ao estado da arte. Como resultados numéricos, o método atinge 99,62% de acurácia, 93,83% de precisão e 0,04% FAR em diferentes bases de dados.