Ultra-high speed memory bus using microwave interconnects

J. Aberle, B. Bensalem
{"title":"Ultra-high speed memory bus using microwave interconnects","authors":"J. Aberle, B. Bensalem","doi":"10.1109/EPEPS.2012.6457830","DOIUrl":null,"url":null,"abstract":"A new memory bus concept that has the potential to dramatically improve double data rate (DDR) memory speed is presented. The memory signal is modulated onto an RF carrier which is routed using substrate integrated waveguide (SIW) interconnect technology. The channel is divided into multi-carrier bands where each symbol is modulated onto one carrier using 64-QAM format. The conventional DDR bus is entirely mapped into the proposed multi-carrier memory channel architecture (MCMCA). At the receiver the signal is demodulated and then delivered to SDRAM devices. Experimental characterization of the new channel shows that by using judicious frequency division multiplexing, as few as one SIW is sufficient to transmit the 64 DDR bits. Overall aggregated bus data rate achieves 30 Gbps data transfer with error vector magnitude (EVM) not exceeding 2.26% and phase error of 1.07 degree or less.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A new memory bus concept that has the potential to dramatically improve double data rate (DDR) memory speed is presented. The memory signal is modulated onto an RF carrier which is routed using substrate integrated waveguide (SIW) interconnect technology. The channel is divided into multi-carrier bands where each symbol is modulated onto one carrier using 64-QAM format. The conventional DDR bus is entirely mapped into the proposed multi-carrier memory channel architecture (MCMCA). At the receiver the signal is demodulated and then delivered to SDRAM devices. Experimental characterization of the new channel shows that by using judicious frequency division multiplexing, as few as one SIW is sufficient to transmit the 64 DDR bits. Overall aggregated bus data rate achieves 30 Gbps data transfer with error vector magnitude (EVM) not exceeding 2.26% and phase error of 1.07 degree or less.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用微波互连的超高速存储器总线
提出了一种新的内存总线概念,它具有显著提高双数据速率(DDR)内存速度的潜力。存储信号被调制到射频载波上,该载波采用衬底集成波导(SIW)互连技术进行路由。信道被分成多载波频带,其中每个符号被调制到使用64-QAM格式的一个载波上。传统的DDR总线完全映射到所提出的多载波存储通道架构(MCMCA)中。在接收器处信号被解调,然后传送到SDRAM设备。新信道的实验特性表明,通过合理的分频复用,只需一个SIW就足以传输64位DDR。总体聚合总线数据速率达到30gbps数据传输,误差矢量幅度(EVM)不超过2.26%,相位误差不超过1.07度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear block-type leapfrog scheme for the fast simulation of multiconductor transmission lines with nonlinear drivers and terminations S-parameter based multimode signaling Simultaneous switching noise analysis of reference voltage rails for pseudo differential interfaces A partial homomorphic encryption scheme for secure design automation on public clouds Thermal characterization of TSV based 3D stacked ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1